
ISI/SR-84-138

N niversitvA0
If' of Sozahrn

___California An

1983
ANNUAL

TECHNICAL
REPORT

July 1982 - June 1983

A Research Program in Computer Technology

C - , I-

7 is docunenl has benove13

INFORMA TION

466Adniraly W'i/Mafrina del Rev/California 90292-6695

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
REPOT DCUMNTATON AGEBEFORE COMPLETING FORM

I. RPRNUBRA SNNN'CAOG DNCOERD

4. TIT LE (and Subtitle) FREPORT & PERIOD OEE

1983 Annual Technical Report: Annual Technical Report

A Research Program in Computer Technology 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(#) S. CONTRACT OR GRANT NUMUER(a)
F30602-81-K-0056

ISI Research Staff F49620-79-C-0181

MDA903 81 C 0335 MCS-7918792
9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

USC/Information Sciences Institute AREA & WORK UNIT NUMBERS

4676 Admiralty Way
Marina del Rey, CA 90292-6695

11 CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency July 1984
1400 Wilson Blvd. 13 NUMBER OF PAGES

Arlington, VA 22209 155
"4 MONITORING AGENCY NAME 6 ADDRESS(II different from Controlling Office) IS, SECURITY CLASS. (o this report)

Unclassified
15a. DECLASSIFICATION 'DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

This document is approved for public release and sale; distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abtract entered in Block 20, If dlflerent from Report)

WS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reveres side if necessary and Identify by block number)

1. implementation of interactive systems, knowledge base. knowledge-based inference, natural
interface, online services, process script, service building, tool building, user interface

2. bit-mapped graphics, consistent underlying environment, COUSIN, extensible environment,
integration, interactive devices, knowlege-based approach, MENUNIX, menus, natural language.

semantic model, service building, service execution, windows
20. ABSTRACT (Continue on reveree aide If necessary and identify by block number)

This report summarizes the research performed by USC/Informatiun Sciences Institute from July 1.
1982, to June 30, 1983, for the Defense Advanced Research Projects Agency. the Air Force Office of

Scientific Research, the National Science Foundation, and the Air Force Systems Command, Rome
Air Development CentL,'. The research is focused on the development of computer science and
technology, which is expected to have a of high DoD/military impact.

DO I JA47F 1473 EDITION OF I NOV 65 IS OBSOLETE Unclassified
S/N 0102-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Dele Entered)

Unclassified
SECURITY CLASSIFICATION OF THIS PAGEI7WI.n Dlat Entored)

11. CONTROLLING OFFICE NAME AND ADDRESS (continued)

National Science Foundation
1800 G Street NW
Washington. DC 20550

Air Force Office of Scientific Research
Building 410, Boiling Air Force Base
Washington, DC 20332

Air Force Systems Command,
Rome Air Development Center
Griffiss Air Force Base, NY 13441

19. KEY WORDS (continued)

3. automation-based paradigm, GIST specification language, granularity, high-level editing, locally
formal notations, mappings, reimplementations. software development, software maintenance,
software specification, Will programming language

4. artificial intelligence, computing environments, constraints, knowledge representation, programming
environments, rapid prototyping, software modeling, specification languages

5. computer mail, gateways, interconnection, internetwork protocol, multimedia mail, networks, protocol
design, protocols, protocol verification, simple mail transfer protocol, transmission control protocol,
type-of-service

6. briefing aid application program, command graphics, computer graphics, high-level graphics
language, network-based graphics, on-line map display

7. computer network, digital voice communication network conferencing, packet satellite network,
packet-switched networks, packet video, packet voice, secure voice transmission, signal processing,
speech processing. vocoding

8. design rules. device fabrication service, device testing, integrated circuit oriented language.
MOSIS-MOS Implementation System, silicon compilation, standard pad frames. VLSI design, VLSI
design library, wafer testing

9. design development, electronic office, environment, human dimension, optimum workspace,
productivity, storage, user control, workstation

10. artificial intelligence, discourse modeling, functional linguistics, grammar development,
human-computer interfaces, natural language, Nigel, Penman. systemic linguistics, text generation,
text planner, text structure

11. debugging, documentation, explanation, formal specifications. GIST, paraphraser, symbolic
evaluator, syntax, transformational implementation

12. formal development structure, grammar-based editing, GIST, Paddle, Popart. reimplementation,
replay. structure comparison, transformation-based maintenance

13. address space limitations, C. Interlisp. LISP dialects, UNIX, VAX, VMS
14. application software. ARPANET, computer network, hardware, Interlisp, KA/KI, KL1O/KL20, network

services, operations, PDP1 1/45, OLISP, resource allocation, system software, TOPS-20, UNIX,
upgrades. VAX 11/750-80, VMS

15. computer communication networks, packet radio, survivable networks, system support
16. internetwork protocol, transmission control protocol, protocol implementation
17. distributed processing, portable workstations, survivable networks
18. distributed processing. local networks, personal computers, workstation environment

Unclassified

SECURITY CLASSIFICATION OF THIS PAGIWr(I n Date Enfered)

Unclassified
SECURITY CLASSIICATION OF THIS PAGEfWen Data Entered)

20. ABSTRACT (continued)

The ISI program consists of eighteen research areas: Consul - development of a knowledge-based
interactive system that can provide services and explanations in response to user requests. including
natural language requests from users with little computing experience CUE - development of a
methodology to automate the process of generating a consistent command-, editor-, and
menu-based interface to integrated software applications using a knowledge-based approach:
Mappings - development of transformations for converting high-level specifications of programs into
implementations in software or VLSI; Information Management - combining artificial intelligence,
software technology, and database techniques to build a more highly integrated, uniform, and user
evolvable computing environment for both software development and information services: Internet
Concepts Research - exploring aspects of protocols for the interconnections of computer
communication networks, specifically the design and prototype implementation of an nternetworK
computer message system and the design of internetwork host and gateway protocols: Commanc
Graphics - developFnent of a device-independent graphics system and graphics-oriented command
and control applications programs: Wideband Communications - exploration of the technology
needed to support satellite-based wideband computer communication with dynamic
intercommunication of many ground stations via packet-switched sharing of a single satellite
channel, and investigation of methodologies for supporting various media of information in this
environment: VLSI - providing a low-cost, fast turnaround LSI/VLSI device fabrication service to
support a geographically distributed VLSI research community with no direct access to VLSI
fabrication but with access to a computer communication network. and conducting research on the
VLSI design problem, from algorithms to "silicon" compilation; Office Environments - development of
a plan for an optimal office space which offers physical ease and comfort, and allows for a high
degree of performance; Knowledge Delivery - development of new methods for autonomous creation
of text by machine, with the focus or, fluent, easily controlled sentence and paragraph production:
Specification Validation - determining whether a specification meets the end user's intent by
paraphrasing it and/or all of its possible behaviors in natural language; Supervisory Control of
Transformational Implementation Systems - creating a framework to aid a programmer to formally
develop software from specifications via transformations by automatically supplying sequences of
low-level transformations which accomplish or facilitate high-level transformations: interlisp -

development and maintenance of portable. large address-space Interlisp implementations: Computer
Research Support - operation of reliable computing facilities and continuing development of
advanced support equipment; Strategic C3 System Experiment Support - participation in a Strategic
Command, Control, and Communication systems experiment demonstrating and evaluating the use of
new technologies (such as the ARPANET, packet radio, network security, and distributed
knowledge-based techniques); TCP/IP Implementation Support - implementing TCP/IP protocols
into active use in the operational ARPANET and MILNET by installing and debugging host software to
support the ISl user community; Exportable Workstation Systems - development of a remote testbed
environment of advanced workstations and servers; New Computing Environment - exploring,
determining, and implementing the next generation of computers and computing facilities for the ISI
research environment.

Unclassified
SECURITY CLASSIFICATION O

r
THIS PAGE(WPsen Dat. Entsedl

* lISI/SR-84-1 38

-' O~i*University

of Southern
California

~ 1983

ANNUAL
TECHNICAL

REPORT
July 1982 - June 1983

A Research Program in Computer Technology

Principal Investigator
and Executive Director:

Keith W. Uncapher

Deputy Director:
Thomas 0. Ellis

Prepared for the Defense
Advanced Research Projects Agency

Effective date of contract 1 July 1981
Contract expiration date 30 June 1984

Contract # MDA 903 81 C 0335
ARPA order 4242

INFORMATION
SCIENCES

INSTITUTE YT 1J4676 Admiralty Way/A farina del Rey/California 90292-W5

This research is supported by conltracts with DARPA (M0A903 81 C 0335), NSF (mCS-7918792). AFQSR (F49620-79-C-0161J, an~d RADOC
(F30WL2-81-K-OO56) Views and conclusions contained in this report are the authors' and should not be interpreted as representing the
oficial opinion or policy of DARPA, NSF, AFOSR, RAOC, the u.s Government, or any person or agency connected with them.

PROJECT FUNDING

The following projects were funded by the Defense Advanced Research Projects Agency. under
contract no. MDA90381 C0335: Consul. CUE. Mappings, Information Management, Internet
Concepts Research, Command Graphics, Wideband Communications, VLSI, Office Environments,
Computer Research Support, Strategtic C3 System Experiment Support, TCP/IP Implementation
Support, Exportable Workstation Systems, and New Computing Environment.

The Knowledge Delivery project was funded by the Air Force Office of Scientific Research, under
contract no. F49620-79-C-0181.

The Specification Validation project was funded by the Air Force Systems Command, Rome Air
Development Center, under contract no. F30602-81-K-0056.

The Supervisory Control of Transformational Implementation Systems project was funded by the
National Science Foundation, under contract no. MCS-7918792.

The Interlisp project is internally funded by the University of Southern California.

iii

CONTENTS

Summary iv

Executive Overview v

1. Consul 1
2. CUE 11
3. Mappings 19
4. Information Management 29
5. Internet Concepts Research 39
6. Command Graphics 55
7. Wideband Communications 59
8. VLSI 73
9. Office Environments 83
10. Knowledge Delivery 91
11. Specification Validation 97
12. Supervisory Control of Transformational Implementation Systems 105
13. Interlisp 115
14. Computer Research Support 119
15. Strategic C3 System Experiment Support 125
16. TCP/IP Implementation Support 127
17. Exportable Workstation Systems 131
18. New Computing Environment 135
19. Publications 141

iv -

SUMMARY

This report summarizes the research performed by USC/Information Sciences Institut)from July 1,
1982, to June 30, 1983, for the Defense Advanced Research Projects Agency, the Air Force Office of
Scientific Research, the National Science Foundation, and the Air Force Systems Command, Rome
Air Development Center. The research is focused on the development of computer science and
technology, which is expected to have a high DoD/mililtary impact.

The ISI program consists of eighteen research areas: Consul - development of a knowledge-based
interactive system that can provide services and explanations in response to user requests, including
natural language requests from users with little computing experience; CUE - development of a
methodology to automate the process of generating a consistent command-, editor-, and
menu-based interface to integrated software applications using a knowledge-based approach;
Mappings - development of transformations for converting high-level specifications of programs into
implementations in software or VLSI; Information Management - combining artificial intelligence,
software technology, and database techniques to build a more highly integrated, uniform, and user
evolvable computing environment for both software development and information services; Internet
Concepts Research - exploring aspects of protocols for the interconnections of computer
communication networks, specifically the design and prototype implementation of an internetwork
computer message system and the design of interoetwork host and gateway protocols; Command
Graphics - development of a device-independent graphics system and graphics-oriented command
and control applications programs; Wideband Conimunications - exploration of the technology
needed to support satellite-based wideband computer communication with dynamic
intercommunication of many ground stations via packet-switched sharing of a single satellite
channel, and investigation of methodologies for supporting various media of information in this
environment; VLSI - providing a low-cost, fast turnaround LSI/VLSI device fabrication service to
support a geographically distributed VLSI research community with no direct access to VLSI
fabrication but with access to a computer communication network, and conducting research on the
VLSI design problem, from algorithms to "silicon" compilation: Office Environments - development of
a plan for an optimal office space which offers physical ease and comfort, and allows for a high
degree of performance; Knowledge Delivery - development of new methods for autonomous creation
of text by machine, with' the focus on fluent, easily controlled sentence and paragraph production;
Specification Validation - determining whether a specification meets the end user's intent by
paraphrasing it and/or all of its possible behaviors in natural language; Supervisory Control of
Transformational Implementation Systems - creating a framework to aid a programmer to formally
develop software from specifications via transformations by automatically supplying sequences of
low-level transformations which accomplish or facilitate high-level transformations; Interlisp -
development and maintenance of portable, large address-space Interlisp implementations; Computer
Research Support - operation of reliable computing facilities and continuing development of
advanced support equipment; Strategic C3 System Experiment Support - participation in a Strategic
Command, Control, and Communication system* experiment demonstrating and evaluating the use of
new technologies (such as the ARPANET, packet radio, network security, and distributed
knowledge-based techniques); TCP/IP Implementation Support - implementing TCP/IP protocols
into active use in the operational ARPANET and MILNET by installing and debugging host software to
support the ISI user community; Exportable Workstation Systems - development of a remote testbed
environment of advanced workstations and servers; New Computing Environment - exploring,
determining, and implementing the next generation of computers and computing facilities for the ISI
research environment.

v

EXECUTIVE OVERVIEW

USC/Information Sciences Institute (ISI) is a large. university-based information sciences resear h
and development center. with programs embracing a blend of basic research, applied research. and
systems development.

ISI's broad spectrum of research covers the areas of communication technology, VLSI, software
production technology, and user-friendly systems. During the past year, there has been a sustained
effort to enhance the quantity, quality, and focus of ISI's research in order to anticipate and meet
emerging national needs and for DARPA-supported work, there is special emphasis on emerging
DoD/military needs. A continuing effort is underway to enhance the research base to track the
growing impact of the information sciences on DoD and the country. High-bandwidth
communications, knowledge-based and expert systems. and advanced extensions of the MOSIS
system, related to major changes in manufacturing technology, represent new or augmented
research programs.

ISI plays a major role in supporting the military's technology transfer programs. ISI has continued
its commitment to large segments of the DARPA research community in supplying high-quality
shared computer support over national networks, and in developing the technology necessary for the
transition of selected military sites from remote shared-cycle systems to distributed
workstation-based environments

A highTight of this reporting period has been the emergence of DARPA's MOSIS as a truly national
resource. Over 40 universities and hundreds of designers now submit \'LSI designs in electronic form
via any network to MOStS. MOSIS delivers chips and will soon deliver user-specified printed circuit
boards to designers 30 to 35 days after receipt of a design.

ISI remains commtted as a major technology transfer center to the military and. as such a
considerable portion of its resources are dedicated to the following:

* discovering critical areas of military C3 in which information processing can allow
dramatic improvements in mission performance and

* identifying required research areas and objectives leading to resultant technology in
usable form.

The DARPA-sponsored research projects at ISI are as follows: Consul, CUE. Mappings. Information
Management. Internet Concepts Research, Command Graphics. Wiaeband Comminications. VLSI,
Office Environments, Computer Research Support, Strategic C3 System Experiment Support. TCP/iP
Implementation Support, Exportable Workstation Systems, and New Computing Environment The
non-DARPA-sponsored research projects at ISI are as follows: Interlisp (funded internally by the
University of Southern California), Knowledge Delivery (sponsored by the Air Force Office of Scientifi:
Research). Specification Validation (sponsored by the Air Force Systems Ccmmand, Rome Air
Development Center), and Supervisory Control of Transformational Implementation Systems
(sponsored by the Nationa! Science Foundation), The diversity of research interests at ISI provides a
broad base for a healthy interchange and amplification of ideas and information,

Consul. The Consul project is exploring the use of knowledge-based technology to allow a natural
interface between users and computer services. We conduct our research in the framework of a
uemonstrable user interface environment that includes facilities for understanding natural language

vi

requests and producing natural language help and explanations. The system contains detailed

models of users and services and a set of inference mechanisms to transform descriptions from one

model into an appropriate description in the other. Consul research therefore focuses on
representation and inference in the interactive systems domain Consul s interface is oesigned to oe
used in conlunction with CUE, which provides a mei/command-based interface that interacts with
Consuls ,nowledge-based components. The interface is provided in a distribuoed envircnment. with

Consul residing on a server machine that can be srared b, one or more CUE wor statons on the
same Ethernet.

CUE. The goal of the CUE project is to provide an extensiole environment fo- buiding and using
integrated interactive computer services. CUE wil. develop and deliver a worKing system in three
years In CUE, there are no boundaries between. say. the electronic maii service uind the automatic

calendar service. This type of automatic inter-service interaction requires an eiviroinient in which
individual services can make assumptions about the properties and behavior of thr: otner services in
the system These assumptions must relate to data structures. functionai capabilit, and state
information. The ob)ective of the CUE protect is to produce such a consistent underlying

environment (CUE). in which users can interact wi: the system without regard to servce boundaries

Mappings. The primary goal of the Mappings project is to capture program scecffication
development, and implementation knowledge in formal tiansformations htgh-ieve' editing
commands. high-level transformations. simplificat,or steps. and optimization strategies. Since its
inception the Mappings project has addressed the oroblem oi representing programming Knowlecge

in terms of our specification language. Gist, b discovering correctness-preserving transformations

for translating Gist's high-level constructs into the lower level constructs used in more conventional
programmiig languages. Hence, the Mappings project addresses the problem of encapsulating
programming knowledge in terms of concise mappings from Gist into alternative implementations. In
the future, more emphasis will be given to mappings for optimization of these implementations and to
mappings which aid our incremental understanding of the design and development of specifications

These latter mappings we call "high-level editing commands" to emphasize that they change the
specification in well understood ways.

Information Management. The Information Management project is designing and implementing a
computing environment that significantly reduces the effort required to create. integrate. and evolve
comouting services, and enables users to customize these services without detailed knowledge of
how they were specified. The basis for such improvements Iles in raising the level at which these

services are specified and modified. The primary task of this project is to implement a testbed
software construction and maintenance environment. The testbed must also provide an execution

environment for software constructed within it. This testbed must make a higher level of specification
directly available to system builders and users without seriously compromising their ability to produce
efficient software.

Internet Concepts Research. The Internet Concepts Research project extends and enhances
computer communications. This work is based on the ARPA Internet. a system of interconnected

computer communication packet networks. The ARPA Internet has workinq protocols for
communication between heterogeneous computers via an interconnected collection of
heterogeneous packet networks. This research involves wor at several levIs, hostto--host and

gateway-to-gateway protocols and applications protocols. The basic protocols are largely complete
now, but a number of extensions are being explored to integrate and extend the pncket network
technology. In the gateway and host level protocols, these extensions include mechanisms and

II

vii

procedures for monitoring and maintaining performance and survivability, for allowing growth of the
Internet, and for dynamic control of the Internet. In the applications level protocols, the focus will be
on new uses of the Internet such as multimedia mail, and new capabilities in the gateway protocols.
Another important aspect of the development of protocols is to investigate their correctness. This
research studies the Transmission Control Protocol (TCP) using several protocol verification tools.
The long-term goals of this project are to provide appropriate and effective designs for the primary
user service applications in the internetwork communication environment.

Command Graphics. A major issue for the military is improved utilization of available data to
enhance the Command and Control decision-making process. The military, like its private sector
counterpart, currently finds itself in the midst of an information explosion. More computers and
computer-controlled systems are being acquired, generating information in ever-increasing quantity
and detail. For this information to be useful in decision making, it is necessary that computers take
more active roles in storing, retrieving, analyzing, integrating, and presenting data. The
man-machine interface is a critical link when computers are used to aid the decision maker.
Information must be presented to the decision maker in ways that enhance and facilitate the decision
process. Two-dimensional graphics can play an important role in improving thic interface. Where
spatial relationships exist, plotting the information on a graph. bar, or pie c - positioning the
information on a map can aid in the rapid assimilation of the information by th, cision maker. Such
two-dimensional displays can even disclose perspectives (e.g., a trend on a ,i or a clustering of
forces on a map) that would not be readily apparent from a table or Ii ; numbers. Finally.
two-dimensional displays provide a natural medium for integrating and 6i, information. To
address the above needs. ISI designed a graphics system based on the pre_....e of distributing the
processing load across hosts in a computer network. The architecture supports a wide variety of
configurations ranging from clustering all functions on a single host to distributing each to a different
host. ISI has also developed a set of generic graphics primitives (Graphics Language) by which
pictures can be described and interacted with at the application level. The Graphics System is now
being adapted for use in DARPA's Strategic C3 Program. Here the computing architecture consists
of a network of VAXes running the UNIX operating system. This adaptation required reimplementing
the Graphics System in the "C" programming language and interfacing it to the UNIX operating
system.

Wideband Communications. The Wideband Communications project at 1SI is one of several
groups involved in the joint DARPA/DCA Wideband Packet Satellite Program. The objective of the
Wideband Program is to explore the technical and economic feasibility of packet voice on a large
scale, and to begin investigations of other media, such as packet video. ISIs role is to conduct
experiments using the Wideband Network as it becomes available for regular, active use. ISI has
been closely involved in efforts to make the network as reliable and useful as possible. and has
established a schedule of regular tests and experiments in an effort to encourage real use of the
network, thus gaining as much practical experience as possible. The ISI WBC project has expended
considerable effort in developing an interface which provides voice access to the Wideband Network
from ordinary telephones, in order to promote 'everyday use of the network and gain realistic user
experience as early as possible. The Wideband Network is currently being actively used for packet
voice experiments. Later, attention will be focused in other directions, including experiments with
high-rate transmission of more conventional non-real-time data and the application of
packet-switching techniques to media such as packet video for the first time. The ISI WBC project is
conducting experiments to demonstrate the utility of packet video in the same way that the NSC
program demonstrated the utility of packet voice.

viii

VLSI. The VLSI design communities of DARPA and NSF require fabrication capabilities in order to
investigate the design methodologies and architectures appropriate to VLSI where gate-count will
exceed one million gates per device Recognizing this need DARPA established the MOSIS (MOS
implementation Service) system at IS in January 19e1 MOSIS has met its design objectives: it has
reduced the cost of VLSI prctotyping, shortened turnaround time for VLSI prototyping. freed
designers from fabrication idios. cracies and made design less dependent on specific fabricator

nes Future services of MOSIS will inciude fabri:ation of prnted circuit boards (PCBs) using a
tooling preparation methodology common to both PCBs and integrated circuits in additior, MOSIS
wil rapldl\ expand its vendor oase for 3 micron CMOS/Buk,. judged to be the work horse of the
design community for the next ten years MOSIS is also taking steps to position its design communit
to exploit the 1 2 micrc ,- CMOS 'Bulk technology tat is being developed at severa commercial and
industna aboratorles The idea is to develop the rules and techniques ir, parallel vth the
development o4 *he technology allowing the entire MCSlS cornmLnity to use this technoloc upon the
completion O& its oevelopment This strategy will narrow the gap between the avalapilty of a neA
technology and the ability to use it

Office Environments. As tne man-machine relationship necomes an integral part. o our lives. anc
the compute, an extension of our minds, our environment must facilitate the use of hardware while
offering a human dimension. T he Office Environments project developed a plan fo, a workspace
which offers phvsical ease and comfort and allows for a hignh degree of performance Curren,
research in relatec areas was analyzed to help identify maTor issues and to avoid duplication
Comuining research, design development construction, and testing the project produced a scaled
prototype of an electronic office based on an existing IS[office area

Knowledge Delivery. The usefulness of computers is often limited b, their verl, poor abilit, to
communicate with people. Computer users--and potential users-are often prevented from usrinc
information because that information is in an obscure, computer-internal notation Man\ of these
limits could be removed by a general technique for expressing computer information in English A
new technology of text generation is needed, one in which techniques can be refined and moved from
one application system to another. Working toward this new technology, the Knowledge Delivery
project is developing a theory and programs of text generation based on the Systemic Linguistics
tradition Significant progress has been made, both in grammar development and discourse
modeling, within a general design framework which encompanses both domain-dependent and
domain-independent parts. A text generation system called Penman has been designed to embod\
these developments, including a large computational grammar of English named Nigel. The Nigel
grammar has been tested extensively, and a corresponding semantic notation for systemic grammars
has been defined and tested. Future work on Knowledge Delivery is aimed at completing ano
integrating the existing developments in grammar and discourse, and on applying them in
experimental text generators.

Specification Validation. Research at IS has indicated that two major impediments to
understandability of specifications are the unfamiliar syntactic constructs of specification languages
and dynamic interactions between parts of the specification-parts that are often widely separated
These interactions may cause the specification to denote behaviors that were not intended by the
original specifier, or not to denote behaviors that were intended. The Specification Validation project
now completed has attempted to overcome the imediments Of unfamiliar syntax and non-local
interactions by constructing computer tools to make specifications more understandable both to
specifiers and to those unfamiliar with formal specification languages One tool, the Gist
paraphraser, addresses the syntax problem by directly translating a Gist specification (Gist is a

ix

high-level specification language being developed at ISI) into English. Another pair of tools, a
symbolic evaluator and a trace explainer, address the more difficult problem of making non-local
specification interactions apparent by simulating the dynamic behavior implied by the specification
and explaining the results of that simulation.

Supervisory Control of Transformational Implementation Systems. The primary goal of the
Supervisory Control ol Transformational Implementation Systems project was to design and develop a
framework for understanding, reusing, and maintaining previous specifications and optimizations
The project developed the system support needed to facilitate the automated implementation of
specifications using transformations. The SCTI project made considerable progress toward this goal.
including the creation of a language-independent development system called Popart, with facilities
for grammar-based editing, analysis. and transformation. a formal representation of program
development, a compilable subset of our (wide-spectrum) formal specification language to act as a
target language for transformation. a goal-directed transformation selection and application
mechanism: and a system for recording and supporting the evolution of real systems (to improve our
understanding of this evolutionary process). Our primary research goal for the future is to support
reimplementations. in a follow-on project called Transformation-Based Maintenance. This support
will take three forms: strengthening the formal representation of developments (especially the
rationale behind each step), supporting the evolution of specifications through the same mechanisms
that support maintenance (and in fact integrating the two processes). and developing a formal
language of modification for both specifications and developments.

Interlisp. This project is creating a self-sustaining support center for Interlisp. The goal of the
project is to provide large-address-space portable versions of Interlisp for the VAX and for other
hardware architectures. Currently, ISI-Interlisp is implemented on the VAX and runs under the VMS
and UNIX operating systems In addition to ongoing maintenance tasKs. development efforts are
planned for the future, includmng the porting of lnterlisp to other machines.

Computer Research Support. The Computer Research Support project is responsible for
providing reliable computing facilities on a 24-hour. 7-day schedule to the ARPANET research and
development community. At the same time. the proiect maKes available to ARPANET users the latest
upgrades and revisions of hardware and software The project provides continuous computer center
supervision and operation, and a full-time customer-service staff that is responsive to user inquiries
This project supports three computer installations tne largest at ISI s main facility in Marina del Re,
The other supported facilities are at the Naval Ocean Systems Center (NOSC) in San Diego and at
Gunter Air Force Base The Computer Research Support project provides support, in four
interrelated, though distinct, areas Hardware, System Software. Operations, and NetworK Services

Strategic C3 System Experiment Support. DARPA has defined an experiment in Strategic C
systems to be conducted in cooperation with the World Wide Military Commanc Control System
(WWMCCS) System Engineer (WSE) and the Strategic Air Command (SAC) The concept of the
experiment is to demonstrate and evaluate th'e use of new technologies (such as the ARPANET
packet radio, network security, and distributed knowledge-base techniques) for strategic commanc
control, and communication. The DARPA experiment is defined as having three phases Phase I is
planned to demonstrate air-to-surface packet radio links and gateways into the ARPANET as a first
step in evaluating the feasibility of a truly survivable strategic network Phase II is directed toward
creating a survivable message system and data bases through multiple copies of the critical
components and data across the ARPANET. Phase III will address the feasibility of rapid
reconstitution of a strategic network by deployment of packet radio networks to reconnect surviving

x

elements of the network ISI's major portion of the above plan is to provide an initial core of
necessary facilities (ARPANET/MILNET access, host systems, various software tools, NetworK
Services support, etc.) to allow SAC personnel to gain experience with this technology and to ensure
the success of the experiment Installation of modems, installation of 30 or more interactive CRT
terminals user training, system software training and support. and on-site maintenance of equipment

are part of the continuing program

TCP/IP Implementation Support. The Department of Defense has adopted the Internet concept.
and the IP and TCP protocols in particular, as DL.J wide standards for all DoD packet networks The
DoD will be converting to this architecture over the next several years The role o4 the TCP/IP
Implementation Support project is to assist in placing these protocols into active use in the
operational ARPANET and MILNET by installing and debugging host software to support the ISI user
community. This effort involves programmers and researchers from ISI, Bolt Beranek and Newman.
Inc.. Digital Equipment Corporation. UC Berkeley. SRI International, Stanford. the Massachusetts
Institute of Technology. and other institutions.

Exportable Workstation Systems. The ISI Exportable Workstation Systems project has
proposed a testbed workstation system for installation at the DARPA-IPTO office in Arlington This
workstation, the SMI SUN (a Motorola 68010-based system with graphics hardware and display). runs
UNIX-based software. ISI will install fourteen workstations, which will be connected to a local
Etnernet and a VAX file server. TOPS-20 systems will be maintained at ISI in Marina del Rey as
remote servers and database hosts This workstation system will provide a model for a distributed
ewivronment, and will serve as a test site for new hardware and software developed in DARPA-IPTO
programs. The system will also serve as a proving ground for software developed by ISI and other
DARPA-IPTO contractors.

New Computing Environment. The New Con)uting Environment proiects goal is to adapt

developing computer technologies to serve the research and military user communities The resulting
model computing environment will serve several purposes. It wil! provide a very large improvement in
languages. system support. and additional computing cycles to the ongoing !Si research effort it will

serve as a testbed and eventual existence proof for the implemented techndiogy: anc it will serve as a
proving ground for local computer environments targeted for DARPA and the rilitar? community, as
well as a device for investigatng new research ideas that wili evertljall, be adapted by those
communities. In addition, the small size. portabilHt,. and local computing capability of personal
computers will allow for experimentation and realization of command and control reQuirements for an
environment that can exist in mobile command centers

1. CONSUL

Research Staff: Research Assistants: Support Staff:
William Mark Nitsan Har-Gil Sharyn Brache
Thomas Kaczmarek Gabriel Robins Kathie Patten
Thomas Lipkis Richard Stokey
William Swartout
David Wilczynski

The Consul project is exploring the use of knowledge-based technology to allow a natural interface
between users and computer services. We conduct our research in the framework of a demonstrable
user interface environment that includes facilities for understanding natural language requests and
producing natural language help and explanations The system contains detailed models of users

and services and a set of inference mechanisms to transform descriptions from one model into an
appropriate description in the other. Consul research therefore focuses on representation and
inference in the interactive systems domain.

1.1 PROBLEM BEING SOLVED

Although computers have become a part of the everyday office environment, their use has not

expanded much beyond that of a typewriter with spreadsheets. In particular. most computer "users"
still do not utilize the many interactive services that could help them do their jobs better. The reason
for this is clear: it is still very difficult for the average user to get these services to do what he wants,

especially if he has to combine more than one service to do his job.

If interactive services are to be useful to a wide audience, they must be accessible through an
interface that makes them truly easy to use. We believe that this interface must unders'ana what the
user wants to do (or wants to know) and let him describe it in terms of menu selection, commands, or
natural language-in whatever combination is most natural for him for that particular task. This
accessibility has been designed into the Consul system Once Consul understands the user s
request, it either formulates the set of function calls that will do what the user wants or generates an
English explanation response to tell him what he wants to know

This interface must be constructed over a body of service functionality that is integrated at the
semantic level. That is, the service functions and data structures must be written so that programs
can be executed in any combination that makes semantic sense This requires a careful model of
desired service functionality and a mechanism for establishing the connections between the model
and the actual data structures and code written by individual service builders.

1.2 GOALS AND APPROACH

Our research on the Consul project is directed toward producing a knowledge-based interface for

the users of interactive office services such as electronic mail, appointment calendars. and document
preparation. The interface includes natural language request understanding and explanation
facilities to be used by a wide class of users ranging from novice to experienced.

2 CONSUL

Consul's interface is designed to be used in conjunction with CUE (see Chapter 2), which provides a
menu/command-based interface that interacts with Consul's knowledge-based components. The
interface is provided in a distributed environment, with Consul residing on a server machine that can
be shared by one or more CUE workstations on the same Ethernet, as shown in Figure I.1.

CUE
Workstation

.... query_

input - -CUE - request - - - Server..

Workstation k- -- - -- -response.---

Figure 1 -1: Consul/CUE System Configuration

Consul's approach is based on representation of the characteristics and behavior of users and
services The resulting knowledge base of user and service actions, objects, and events provides a
foundation for the inferential activities that are necessary to map the user's description of his needs
into the system's descriptions of service capabilities and requirements (and back again to the user's
domain, to produce explanation responses). Using the knowledge base to provide interface facilities
is a process of inferring the appropriate system behavior for a given input.

When a user produces input at a CUE workstation. the input can be a menu selection (via mouse). a
typed-in command, or a typed-in natural language request. Any input that CUE cannot deal with in
the workstation command processing environment is sent on to Consul as a request that requires
knowledge-based processing Consul expresses the request in terms of the system's knowledge
representation and then uses inference to try to describe the representation as either a service
operation to be executed or a natural language explanation response to be generated. This
processing may require Consul to query databases on the CUE workstation about the details of data
structures (e.g., to find out if there is some user named Jones, or if the logged-on user has scheduled
a meeting for tomorrow on his calendar).

Consul is also examining the problem of knowledge acquisition in the interactive service domain
The approach here is to allow a service builder to describe a function or data structure to the system,

and to use inference to determine how it fits into Consul's knowledge base (what Consul already
knows about the user and system environment).

1.2.1 Knowledge Representation and Modeling

Consul's current knowledge base is implemented in the KL-ONE representation formalism [3)
Although KL-ONE is adequate for constructing our demonstration, its limitations in terms of efficiency
and expressive power make it the wrong vehicle for future work. We are therefore currently involved
(jointly with Bolt Beranek and Newman, Inc.) in a major new implementation of KL-ONE (NIKL), on
which we will base our future work.

NIKL provides more consistent and compact data structures for representing knowledge, along with

GOALS AND APPROACH 3

NIKL provides more consistent and compact data structures for representing knowledge, along with
a much-needed overhaul of the function call interface. Even more important is NIKL's improved
expressive power, including the ability to represent disjunction (which aids certain aspects of
semantic interpretation in the natural language system and allows all of the system's inference
mechanisms to reduce their search times), a clean representation of roles (which aids in the process
of concept definition and improves the efficiency of the classifier), and a clean interface to the
assertional mechanism (which allows consistent usage of the knowledge base by external reasoning
processes). Some of the Consul system has already been brought up in NIKL; conversion of the
remaining part is underway.

A good representational foundation is extremely important for the knowledge base, but it does not
address the crucial question of what should be in the knowledge base. Our modeling efforts maintain
a distinction between the user model, a consistent description of a "user's view" of the system, and
the systems model, a representation of the operations found in interactive systems along with the
data structures these operations work on. The systems model is further divided into two categories:
general knowledge of interactive computing that is pre-built in the Consul knowledge base, and
specific knowledge of the particular operations and data structures of each service that is added by
the acquisition mechanism.

These distinctions are important for the inferential processes that use the knowledge base to
produce the behavior of the system. For example, the user model provides the target for the natural
language system (anything the user says must be translated into some user model concepts) and the
filter for producing explanations (anything said to the user must be in terms of user model concepts).
The systems model similarly provides a filter for the acquisition process, allowing it to produce valid
service-specific descriptions as its output.

We have recently begun to tie together these various aspects of the model to form a "safety net"
that will be able to catch virtually any user input in order to allow further processing. For example, if
the user says:

Get this message to Jones.

Consul can recognize the input as a request for sending, because the parser will interpret it as a
request for the user model concept of "information transfer."' "Information transfer" on an object
that can be seen as a "message" can then be recognized as the system's concept of "send."

1.2.2 Inference

Consul's reasoning activit is based on the fundamental inference activities of recognition and
redescription. Recognition is the process of determining how each piece of incoming information fits
into the system's current knowledge. Redescription is the process of determining how each
recognized piece of knowledge can be viewed as applicable to the system's problem-solving goals.

Recognition consists of classification, finding the appropriate place for each new piece of
information in Consul's taxonomy of knowledge, and realization, finding the real-world objects
described by each new piece of information. Classification involves the determination of the
relationship between the terms of a new description and the terms already known to Consul. For
example, a concept like "Smith's reply" must be related to known terms, such as "structured data,"

1 The safety net structure of the model is reflected in the semantic interpretation of natural language as well-see Section
1 2.3

4 CONSUL

"message." "user," and "Smith." Realization is the association of each new term with the real-world

objects it describes. For example. "Smith's reply" must be seen to describe a particular real-world
entity if Consul is to be able to determine useful information like "Smith's repl) is the same message

as Message 17."

The classification process is currently being reimplemented in NIKL to taKe advantage of the new
representation technology and the new. more efficient data structures Preliminary tests indicate that
it will be several times faster than the existing Consul classifier The realization mechanism is also

being redesigned in order to take advantage of NIKL s clean interface to the structure of assertions
that represents the real world.

Consul's redescription mechanism is also being revamped to take advantage of NIKL and of the new

structure of the model. Rules in Consul are still represented in the knowledge base as ordinar,
concept structures consisting of a condition and conclusion linked by asserted correspondences

between parts. Interpretation of the rule is, however, somewhat different in the new scheme

When the description of an entity instantiates the condition of a rule (as determined by

classification), the redescription mechanism knows that. under certain conditions. that description
can oe reformulated according to the conclusion of the rule. These conditions express necessary
redescribability constraints between the rule's condition and conclusion. For example, a rule might

state. "a user reply can be redescribed as the creation of a system message whose replier' is the

sender of the new message and was an addressee of the original message." 2 The redescription
mechanism must then check to see if the 'replier' can be redescribed as a valid sender and so on-a

recursive process that terminates with known primitive redescription relationships (e.g.. any of the
known ways to describe a person on the system-name. nicKname, system ID. etc.-can be
interchanged). This redescription process continues until a description is created that corresponds

to one of Consul's goal behaviors: responding to a request via function execution or explanation.

1.2.3 Handling Natural Requests

A major Consul accomplishment has been the demonstration of the advantages of a workstation

environment that allows natural language input and output to be integrated into a state-of-the-art.
window-based menu and command interface. Consul has demonstrated an interface that includes

understanding of natural English requests (e.g., "Forward this message to everybody in my 3.30
meeting "), natural English responses to questions about the system (e g . "What has to be in a

forwarded message?" leading to the answer "A forwarded message must have an addressee and a
message to be forwarded."). and natural English error responses (e g., "You can't forward a draft
message. you can release it or send it for review.").

The natural language features of the interface make it easy to use. eas', to learn, and

nonthreatening; provide natural access to problem-specific help information, and give users easy

access to functionality across applications.

The natural language understanding system is based on a large coverage English parser [1] and a
first-level semantic system [2], both originally developed at Bolt Beranek and Newman, Inc. We have

interfaced the parser to the Consul knowledge base and extended and adapted the semantic system

to our workstation environment.

2The actual rule is much more detailed

GOALS AND APPROACH 5

The semantic system is structured in terms of phrasal frames. Each frame is a pattern for
distinguishing a semantically distinct phrase. Semantic interpretation consists of matching the input
sentence to the appropriate phrasal frames and producing the meaning representation from the
matched frames. These frames are organized into a safety net to support the structure of the model.
Natural language input that does not fit directly into an interpretation in the user model is "caught" in
the phrasal frame safety net for special processing. Thus,

Get the specs to Jones.

can be interpreted as some kind of request for sending, even if the system does not know what
"specs" means, because the phrasal frame safety net is prepared to accept a more general noun
phrase in what is usually the "message" position Consul's response would be to put up a
message-sending form with "To: Jones" filled in. along with the explanation "I don't know what
you're trying to send...Could you move it into the message window?" In addition, a new semantic
interpretation algorithm, MIFIKL [10, 13], is being implemented to efficiently access this greatly
enlarged body of frames.

We are also exploring techniques for robust natural language interaction based on the ideas of
relaxations coded in meta-rules [5, 9]. These rules apply when normal interpretation of input fails.
Each rule identifies a type of "error" and the relaxation necessary for complete interpretation of the
phrase. This work has been implemented for ungrammatical input with respect to our current
grammar system.

1.2.4 Acquiring Services

Execution and explanation of individual service capabilities require detailed models of services. It
would be virtually impossible for us to build in all of these models by hand. It would also be impossible
for the service programmer to build them by hand, since he is presumably unfamiliar with our model
and, indeed, the entire modeling process. It is therefore essential that Consul provide a
computer-aided methodology for incorporating detailed models of services into the overall system.

The acquisition procedure receives new services into Consul by asking the service programmer to
describe the relevant features of the functions and data he is implementing. "Relevant" features are
those that, according to Consul's systems model, affect the user's view of the system. The service
programmer's descriptions are in terms of process scripts, a formalism especially designed to
provide an adequate descriptive mechanism for allowing the automatic acquisition procedure to
examine the system's knowledge base and make appropriate connections to the service programs
and data. The acquisition mechanism therefore consists of a structured dialogue between the system
and the service programmer that results in forming a relationship between Consul's general model of
a given function or data structure and its implementation in terms of the function or data structure the
service programmer is actually coding.

The first acquisition scenarios were always in terms of process atoms. process scripts with only a
single call to application code. The acquisition of more complex process scripts was an open issue:
acquisition was never intended to read and analyze arbitrary process script code. Now we are writing
process scripts that establish an implementation for the functions represented in the knowledge base.
Acquisition will direct the service builder in specializing these scripts. The process script is
constructed so that its instantiation produces a specialization of the KL-ONE model as well. The
process script thus becomes a bridge between the KL-ONE models and the CUE execution
environment.

CONSUL

As an example, consider the following abstract process script that deletes a reference to a generic
object from its directory

Process Script: DeleteObjectReference:
input: oObjectReference
Body.

(Edit o ChangeHilite Deleted)
(MarkObjectDeletedAtom o)

(IF (m - (Openp (ObjectFromDirectoryReference o)))
then (CloseWindow (GetWindow m)))

This process script, which is attached to the KL-ONE model of "directory item deletion," is a skeleton
to be instantiated for real objects like messages The functions Edit, Openp, CloseWindow, and
GetWindow are system utilities for use with any data structure in the CUE environment.
ObjectFromDirectoryReference is applicable only to objects defined to be a kind of ObjectReference.
The only code the service builder must write when he specializes this process script is
MarkObjectDeletedAtom-the " *.. indicates the need for a service atom.

1.3 TECHNICAL ISSUES

The primary problem for Consul research is deciding how to choose, express, and implement the
many knowledge base concepts necessary to model the events, actions, and objects of the interactive
computing world, Deciding what to model is a matter of deciding both what to include in the
knowledge base and what to say about it. This is essentially the problem of describing something so
that someone else (or in this case. something else-Consul's inference mechanisms) can understand
it. We are gaining experience with this process and have made considerable progress. thanks in
great part to NIKL's greater expressive power and its cleaner split between the descriptive and
assertional worlds.

Once the choice of concept description is made. the concept must be expressed in a consistent.
general formalism that allows automatic recognition and rule-based reformulation procedures. This
is a problem of epistemology applied to the domain of mechanized inference. Our work, in
combination with that of our colleagues [4. 7], has been directed toward achieving clarity and
expressive power in our representation language through careful preservation of the epistemological
structure inherent in the knowledge we are trying to represent. This work has resulted in KL-ONE
NIKL, and related formalisms; we see it as an area of continuing research interest and importance

Finally. the representation formalism must be implemented efficiently on the machine sc that the
knowledge base can be quickly searched, cleanly interfaced to external databases and procedures,
and easily maintained. Actually using the knowledge base for Consul activities requires efficient
inference and search procedures. We need algorithms for rapidly determining the relationships
among terms in the formalism, using terms to make statements about the world, and using inferential
meta-knowledge to pursue the problem-solving goals of our system. The classification, realization,
and redescription mechanisms probably represent the state of the art in this area. Nonetheless, they
are only a first-cut solution to the overall problem. We are currently investigating new algorithms
based on our latest thinking about the representation formalism and on the probable future
availability of parallel computation methods.

TECHNICAL ISSUES 7

The knowledge base must also be interfaced to the outside world-not only to provide input/output,
but also to allow connection to information that is part of the system but not represented in the
knowledge base. Explicitly modeling information in the knowledge base increases the systems
capability, but is costly in terms of execution speed and memory requirements. Choosing to represent
information outside of the knowledge base can be more efficient (and is in fact necessary in some
environments), but brings up issues of what the system does and does not know about the
information it contains. We are currently investigating ways to connect the knowledge base with the
rest of the system so that it provides clean semantic distinctions to guide Consuls various dealings
with the information it contains.

Building and maintaining the knowledge base is a matter of providing the appropriate tools for
creating. examining, and changing knowledge structures. We have produced useful tools for each of
these activities, but we still have much to do in order to make our entry and maintenance procedures
smooth and efficient.

The Consul project is also investigating technical issues not directly related to the knowledge base:
how to present information on the display screen so that the user can understand it easily, and how to
build service software with sufficient flexibility and consistency to meet the demands of responding to
requests that are natural to the user. We have been experimenting with various designs for the users
screen interface, which must wait for use by real users for any sort of validation. In terms of service
software design, we have been concentrating on the abstract datatype formalism as a mechanism for
enforcing consistent programming practice to meet Consul's overall service design requirements

1.4 SCIENTIFIC PROGRESS

We have implemented a combined Consul/CUE demonstration interface that runs as a
distributed system across the Ethernet. The system is written in Interlisp and has been
demonstrated on all machines in the Xerox 1100 series. It is a demonstration vehicle that
works only on a limited number of test cases. The system consists of

- a KL-ONE knowledge base of about 1000 concepts;
-the natural language understanding system;
- a first-cut explanation and language generation facility.
- a real-time interface to the CUE workstation environment.

In order to receive feedback on our interface design from a wide variety of experts and
potential users, we have provided numerous demonstrations of our combined
Consul/CUE system.

* We are cooperating with Bolt Beranek and Newman, Inc., in the KL-ONE/NIKL
knowledge representation effort.

* We are continuing our cooperation in basic knowledge representation research with
groups at Fairchild Research, Xerox Palo Alto Research Center, and Bolt Beranek and
Newman, Inc.. and are conducting a knowledge representation workshop this fall to
provide a forum for the discussion of recent progress in knowledge representation
research.

* Our publications and presentations include the following:

- 1983 International Joint Conference on Artificial Intelligence, Karlsruhe, Germany:

, presentations and demonstrations of the Consul/CUE interface;
, publication of a paper on the KL-ONE classifier [8].

FUTURE WORK 9

1.6 FUTURE WORK

Our major goal is to use the combined Consul/CUE approach to produce an interface that is
efficient enough (in terms of both user and system execution time) to be useful with current
technology and is robust enough to be useful in an actual user environment.

Efficiency will come from a thoroughgoing use of our distributed approach to ir,,erface
management. By concentrating the high-frequency window, menu, and command-oriented
operations on the user's own workstation, and by providing smooth access to the knowledge-based
server for the rarer requests requiring this service, we will achieve a total system that is efficient
enough for real-time use with currently available technology.

Robustness in the Consul system will mean that. where possible, the system will provide the service
execution or explanation response that the user has requested. Where this is not possible, the
response generated will always be a useful suggestion of a way the user can accomplish his intent.

For the natural language system, this robustness requires the construction of a large set of phrasal
frames. We have already begun to build the phrasal frames needed to handle a wide variety of
message transmission requests. In the future, studies will be undertaken on filing messages,
updating calendars, querying the contents of directories of files, etc. Because of the
interrelationships, each completed study will ease the next domain study. For example. our phrasal
frames for message descriptions used in the transmission task will largely serve for the filing task.
Further, we have begun to identify classes of activities and semantic phenomena that can be allowed
for automatically or can be easily added to phrasal frames in new domains. Example results include a
tool for machine-assisted lexical acquisition and a fairly general treatment of time modification. The
product of this research will therefore be not only a large set of phrasal frames, but also tools and
guidance on developing the e structures.

For the rest of the Consul system. ,ncreased efficiency and robustness require better inference
mechanisms and more complete models of users and systems. We are therefore deeply involved in
inference and modeling research, expecting to provide efficient inference on a knowledge base an
order of magnitude larger than our current one (i.e.. on *he order of 10,000 concepts). This increase
in inference efficiency and model size and sophistication in turn depends on continuing
improvements in our underlying knowledge representation formalism and the tools we have
developed to use it. Through our work on NIKL. we have already begun the process of improving our
representation technology we plan to push forward in this area, in cooperation with others in the Al
community.

REFERENCES

1. Bobrow, R. J.. "The RUS System," in B. L. Webber and R. J. Bobrow (eds.), Research in Naturai
Language Understanding, Bolt Beranek and Newman, Inc._ Cambridge, MA. 1978 BBN
Technical Report 3878.

2. Bobrow, R. J., and B. L. Webber, "Knowledge representation for syntactic/semantic
processing," in Proceedings of the National Conference on Artificial Intelligence, AAAI, August
1980.

3. Brachman, R., A Structural Paradigm for Representing Knowledge, Bolt Beranek and Newman,
Inc., Technical Report, 1978.

F_1

10 CONSUL

4. Brachman, R., R. Fikes, and H. Levesque, "KRYPTON: A functional approach to knowledge
representation," IEEE Computer, September 1983.

5. Kwasny. S. C., and N. K. Sondheimer, "Relaxation techniques for parsing grammatically
ill-formed input in natural language understanding systems," American Journal of

Computational Linguistics 7. (2), 1981. 99-108.

6. Lipkis, T., "Descriptive mapping for explanation production [Abstract].' SIGART Newsletter,
(85), 1983.

7. Moser, M. G.. "An overview ot NIKL, the New Implementation of KL-ONE," in Research in

Natural Language Understanding, Bolt Beranek and Newman, Inc., Cambridge, MA, 1983. BBN
Technical Report 5421.

8. Schmolze, J., and T. Lipkis, "Classification in the KL-ONE knowledge representation system," in
Proceedings of the Eighth International Joint Conference on Artificial Intelligence, IJCAI, 1983.

9. Sondheimer, N. K., and R. M. Weischedel, "A rule-based approach to ill-formed input," in

Proceedings of the Eighth International Conference on Computational Linguistics, pp. 46-53,

International Committee on Computational Linguistics, October 1980. Tokyo.

10. Sondheimer, N. K., and R. M. Weischedel, Consul Note 22: "Towards Semantic Processing with
Phrasal Frames Using Structured Inheritance Networks", USC/Information Sciences Institute,
1983.

11. N. K. Sondheimer (ed.), Tutorial on Natural Language Interfaces, Association for Computational
Linguistics, 1983.

12. Stokey. R., Consul Note 21: "Implementation of a KL-ONE Network on the Connection
Machine", USC/Information Sciences Institute. 19&3.

13. Weischedel, R. M., and N. K. Sondheimer, Consul Note 23: "Relaxing Constraints in MIFIKL",

USC/Information Sciences Institute, 1983.

11

2. CUE

Research Staff: Research Assistants: Support Staff:
Thomas S. Kaczmarek Haym Hirsh Kathie Patten

Gabriel Robins

2.1 PROBLEM BEING SOLVED

The goal of the CUE project is to provide an extensible environment for building and using
integrated interactive computer services. In CUE, there are no boundaries between, say, the
electronic mail service and the automatic calendar service. Consioer the following task:

sendi;ng a message to everyone in my 3.30 meeting tellng them I cart ,make it

Accomplishing this task requires a common understanding of the services involved essentially, one
must know how to find a particular meeting in the calendar system frameworK, access its attendees.
and convert them to valid addressees in the message system framework. Unless the basis for such
understanding has been designed into the system from the very beginning, automatic interservice
interactio, at this level is impossible. In current systems, almost all of which consist of totally
separate ,ervice programs or "subsystems," the necessary interservice understanding is completely
outside of the design framework. If a user wants to perform a task like the one above, he must
interact with each service program separately. doing his own data conversions (usually via a text
editor). In short. given current software environments, the problems of such a priori program
planning and implementation to allow for interservice interaction are intractable. Tasks like the one
above cannot be performed without a great deal of painful user involvement

Automatic interservice interaction requires an environment in which individual services can make
assumptions about the properties and behavior of the other services in the system These
assumptions must relate to data structures, functional capability, and state information The objective
of the CUE project is to produce such a consistent underlying environment (CUE) ir which users can
interact with the system without regard to service boundaries

2.2 GOALS AND APPROACH

The key element of the CUE strategy is to have a semantic model of how each program element
(function or data structure) fits in with the other program elements in the system That is. when a
"send message" function is defined CUE must have a model of how the elements of a message (e g ,
the "user" in the addrcssee field) are already being used in the system. It must also 0,ow that
"sending" involves transmitting information from one place to another, that the information mu:3t be
made accessible at the destination, and so on. CUE can then use this knowledge to ensure that ?ach
new program element fits in appropriately with. and can be used as a part of, overall system
functionality. CUE must also act as an execUtion environment which supports the sharing (or
coercion) of data structures and the uniformity of function invocation necessary for interservice
interaction.

12 CUE

To take full advantage of CUE's underlying consistency. the user interface must facilitate two
activities (1) sharing data from various services, and (2) combining functions from various services
All interaction with CUE will be through a multi-windowed full-screen editor Such an interface is
ideal for encouraging data sharing, because it ailows the user (through movement of a graphic
cursor) to select any displayed information and to insert a copy of it at any position on the display
Functional combination will be encouraged by allowing arbitrary functions to be applied to any
selected region of a window and by supporting a functional style of computing in the commanc
language.

2.2.1 Research Issues

The CUE project must address the following research issues:

" specifying a common data definition substrate
" representing the relationships among structures and functions of different services.

" defining the user interface
" achieving the correct level of modularity (grain size) for service functions,
" finding the correct level of interaction with a knowledge-based user interface (the Consul

system) and
" providing transportability to maximize the impact of CUE on personal workstations

2.2.2 Approaches to the Solution

Although there are currently no adequate solutions to these problems. we believe that there are
fruitful approaches for all of them. based in part on complementary research at ISI and el, ewhere.

2.2.2.1 Data definition

The problem of common data definition is well known in computer science: several kinds of
solutions have been or are being investigated (e.g.. [4. 12]). One of these techniques or a
combination of them must be adapted by CUE to its service definton formalism. Work on abstract
data types [2] will have a very strong influence on CUE. This technique is appealing because of its
compatibility with the requirements of knowledge-based modeling and because it provides a
well-defined and consistent view of data structures.

2.2.2.2 Modeling service relationships

A few current systems (e.g.. UNIX) contain primitive mechanisms for combirng the functiona
elements and data structures of different interactive services. However. there is never a semantic
model of the relationships between different service entities. Thus, the systems have no
representation of the basis for commonality between, say, a message service and a calendar service
Existing systems can therefore never go very far toward ensuring integration they must re!' on each
service builder to think of the necessary interrelationships among his service and others, and to
design in enough flexibility to handle any interactions that might occur.

CUE will avoid this total reliance on the service builder by providing a semantic model that links the
functions and data structures of one service to those of others. CUE will provide an acquisition
mechanism that associates the program elements of new services with the constructs of this model.
Research on knowledge representation and acquisition in the Consul project provides already
well-developed techniques for modeling the characteristics of interactive systems [7, 11]. The CUE

GOALS AND APPROACH 13

project will use and extend Consul's model to provide the independent semantic description that
allows the system to relate the data and functions of different services.

2.2.2.3 The user interface

CUE's user interface will focus on techniques which facilitate interservice sharing, promote a
consistent user view of the system, and guide the user through interactions. A number of existing
techniques and extensions to them will influence the design of the user interface.

Multi-windowed full-screen editors are a proven technique for coordinating and sharing information
between files. The benefits of supplying an omnipresent editor were demonstrated in the SIGMA
message system [101. The extension of this approach to a multi-service environment will encourage
a consistent user view by providing a uniform mechanism for the examination and modification of
data. A functional style of computing [1] will be used to further encourage the combination of
functions from different services.

Extensive use of forms and menus will be used to help the user specify his task The value of such

an approach has been demonstrated in commercial systems like the Xerox Star as well as in research
efforts such as COUSIN [3] and MENUNIX [8]. The main difference between the CUE approach and
that of COUSIN or MENUNIX is the integration of services and the resulting pervasiveness of the user
interface. All data. not just command lines, will be handled through the same user interface in CUE
Furthermore, while the physical appearances of the CUE interface and the COUSIN interface may
resemble each other, they are generated by very different processes. In CUE. after acquisition of a

function, the user interface is automatically updated to make that function available and to make the
invocation of it consistent with similar functions.

CUE offers multiple levels of help. Menus and forms are a first level, because they make it clear to
the user what functionality is available. User inquiries about valid parameterizations of functions will
also be handled through menus. For example, if the user wants to delete a file, the request for valid
parameterizations will list all of the files he can delete. Explanation text will be an integral part of the
user interface. Since CUE and Consul use the same knowledge base, CUE can use Consul's
explanation facility to generate this text for service constructs automatically. In addition an integral
part of the CUE project is provision for communication between the CUE and Consul systems, thus
giving the CUE user access to Consul's natural language help and exolanation facility for ver\
specific help requests.

CUE research on the user interface must also include experiments that investigate the most
user-efficient ways of using bit-mapped graphics. electronic pointing devices, speech and other
state-of-the-art interaction media. The CUE user interface will be designed to be very tailorable and
device independent. The user will be given great flexibility in modifying the interaction protocols.
allowing experiments with different methods to be conducted and providing the user with modifiability
to meet individual needs and preferences. Device independence will be supported with multiple input
channels available to the user at all times. The user will decide which input device is most convenient
and simply use it. Mixed-media input will be supported, so that parts of a command may be spoken
while other parts may be typed and still other parts pointed to on the screen. Multi-media interfaces

are a new development, and it will take some amount of experience to learn how to best use them.

14 CUE

2.2.2.4 Grain size

Ensuring the appropriate functional grair size for each service requires checking with respect to the
semantic model and with respect to the other functions in the system CUE will use the model to
ensure that the size of each new function makes se-a't'c sense (i.e . that the function works on the
right kind of objects-for example, that a function purporting to be a "send" puts message data
structures into mailbox data structures). In addition CUE will use its knowledge of the other functions
in the system to ensure that each new function makes st;'ctural sense (e.g.. that there are other
functions for accessing the mailbox data structure and for composing the messages)

2.2.2.5 Consul interaction

CUE's user interface is designed to interact with Consul to provide natural language request
handling and to support the generation of specific help for the user's problems. Practical application
of Consul is at least several years off, however. CUE is tied into Consul research, and when the
technology becomes practical CUE will offer it to the user When Consul comes on line, the CUE user
will be able to type sentences such as. "Allow anyone to read this file." or "How can I recover from
this error"' CUE will notice that these are not command requests, realize that they might be natural
language requests, and pass them to Consul Consul will be able to process sentences such as these
only if it has a model of the current environment. CUE must supply Consul with enough information to
build this model. The CUE and Consul projects must together determine how much of the state
should be modeled in Consul and what mechanism Consul will use to reference or access information
that is not explicitly modeled. The projects must also determine an appropriate formalism for efficient
communication at two levels: knowledge base operations and procedure invocation (inference
procedures in Consul and service procedures in CUE) From the operating system viewpoint, these
are both presumably interprocess communications that will have to be covered by the appropriate
protocols (see [9]).

2.3 SCIENTIFIC PROGRESS

The CUE project has decided to rely heavily on the formalism of abstract data types. This formalism
provides the basis for the common data definition substrate as well as the modeling of data
structures. Furthermore. reliance on abstract data types provides some of the answers with respect
to the user interface, because they provide a model of data that is an abstraction of the way users
think about it. Combined with generic functions, abstract data types simplify both the modeling in
Consul and the communication required between CUE and Consul, Finally. abstract data types and
interprocess communication combine to give CUE a methodology for both integrating existing
services into the CUE environment and distributing functionality across a network.

The strategy of using abstract data types as the basis for modeling, data definition. and the user
interface has been tested by generating a demonstration system The demonstration system portrays
the interaction between calendar and mail services The execution environment of the demonstration
has been built by hand, using the principles that CUE is seeking to automate. This effort has verified
the soundness of the approach.

The demonstration system has also been useful in terms of gaining experience with different
strategies in the graphic characteristics of the user interface. As a result of this experience, the CUE
project has defined a generalized forms package and a strategy for employing it in the system. All
information in CUE will be presented via a generalized form. The following generalizations are made
in the CUE forms package:

SCIENTIFIC PROGRESS 15

" Forms are hierarchically organized-the fields of a form are generally other forms, not
simply text strings.

" Classes of forms can be defined to encourage consistency across forms and to simplify
their definition.

" Form generation and placement protocols are user modifiable.
* Forms define the interaction between the user and the form as well as the graphic

attributes of the form.
" Forms may have functions attached to them which perform actions such as testing data,

controlling the flow of the interaction, and computing values
" Forms may use multi-media communications.

The demonstration system also gave us an opportunity to experiment with CUE/Consul interaction.
CUE and Consul were separated so that they ran on different processors. A strategy was developed
for deciding which information CUE must supply to Consul to maintain its record of an interactive
session. We discovered that the granularity of the information exchange between CUE and Consul
could be quite coarse, since in most cases Consul did not need to know the details about the data
being manipulated. Consul simply needed to know that the data existed and that some operation had
been performed on it. This discovery is important because it allows Consul to do "less modeling" in
the sense that it does not have to build an explicit semantic model of all the objects in the user's
world.

The publications and presentations of the CUE project include the following:

* SoftFair '83 [5]:
" demonstration of CUE/Consul at IJCAI '83
" demonstration of CUE/Consul at AAAI 1983

2.4 IMPACT

Many current applications are underutilized because they are not well integrated with other systems
with which they naturally interact. Recent successes in integrating just three services (spread sheets,
graphics, and data bases)1 have demonstrated the impact that integration can have. However.
integration beyond a few services is impractical without a methodology to oversee the installation of
new services into the environment. The knowledge-based approach of CUE can provide the basis for
enforcing integration.

CUE can also affect two of the major problems faced in the jevelopment of applications:

" designers would like to minimize inconsistencies in the interface as the user moves from
one application to another, and

* roughly 60 percent of current development efforts are committed to the generation of the
user interface.

With the advent of more sophisticated interactive devices, the time spent on the user interface and the
inconsistencies found across applications will only increase. A methodology is needed to automate
much of the responsibility for the generation of the user interface. This problem can also be solved by
CUE's knowledge-based approach.

1 The commercially available systems, Context MBA and Lotus 1-2-3.

16 CUE

Personal workstations are the way of the future, and CUE can influence the development of this
important technology in the short term Personal workstations will support significant local
processing to avoid delays seen in current time-sharing systems, and will use bit-mapped graphics to
improve the presentation of information to the user. The hardware for these workstations is now
coming on the market from several sources. However, the software available on current workstations.
while advanced in some respects, is inadequate for the long term because of its user interface and
lack of support for service integration.

Software which intelligently uses the advanced graphics capabilities of current workstations,
provides a consistent and understandable interface, and allows interservice interaction (i.e., data
sharing and functional cooperation), must be developed to prevent the entrenchment of the current
software in this new and important computing environment. The consequence of not attending to
these problems is a system which will only exacerbate the problems now faced. As part of the CUE
research plan, we will produce such software for use within ISI and for export to external user
communities.

2.5 FUTURE WORK

CUE wilt develop and deliver a working system in three years. This system will include several
services (e.g., document preparation, mail, calendar, data analysis). integrated into the CUE user
interface. The user interface will support multiple forms (windows) and an all-present full-screen
editor for these forms. A CUE workstation will be able to communicate with Consul for handling
natural language requests. An important part of the working system will be a set of tools that allow
new services to be added to the system. While CUE is a single system, it has two aspects to it: the
service building activity and the service execution activity.

2.5.1 Service Building

Service building is an off-line activity. The service builder will use the Process Script language [6]
to describe his service. Process Scripts are not intended to be used to actually write service
functions; rather, they are to be used to declare information about functions and to configure calls to
service functions. The executable code for the service functions may be written in any language, but
the service builder must describe the data as abstract data types using the Process Script data
definition capabilities (i.e., identify the structure and operators for the data) and must wrap the
operators in Process Scripts. By using interprocess communication, CUE will be able to operate in an
environment that allows service constructs to reside in independent processes or even independent
machines.

After describing a service using Process Scripts, the service builder will introduce it to the system
through an acquisition dialog, which will build a model of the service construct in the KL-ONE
knowledge base and add it to the execution environment. Adding a new service to the environment
will cause the new functions to appear in the correct menus, add command table entries for the
functions, and generate explanation text for new constructs and include these in the run-time
support.

The following major tasks must be accomplished to support service building:

* updating the definition of the Process Script language to reflect current ideas about
modeling service constructs, including the addition of a facility to define abstract data
types; and

* designing and developing the acquisition process, including building the execution
environment.

FUTURE WORK 17

2.5.2 Service Execution

The major features of the service execution environment include an omnipresent full-screen editor.

integrated services, and Consul access.

The following major tasks must be accomplished to provide this execution environment:

" implementing a forms package to describe the presentation of user data:

" implementing a full-screen editor to interact with the forms package to allow the entry
and modification of data;

" implementing a Process Script interpreter including support to inform Consul about user
actions and error handling capabilities;

" placing CUE on top of some existing operating system to make use of its file system,
process mechanism, I/O drivers, etc.;

" modeling the execution environment including general service areas; and

" selecting, building. and acquiring several useful services.

REFERENCES

1. Backus, J.. "Function-level computing," IEEE Spectrum 19, (8), August 1982, 22-28.

2. Dahl. 0. J., E. W. Dijkstra, and C. A. R. Hoare, A.P.l.C. Studies in Data Processing. Volume 8:

Structured Programming, Academic Press, 1972.

3. Hayes, P. J., "Cooperative command interaction through the COUSIN system." in International
Conference on Man/Machine Systems. Manchester, July 1982.

4. NASA, IPAD: Integrated Programs For Aerospace-Vehicle Design, NASA. 1980.

5. Kaczmarek, T., W. Mark, and D. Wilczynski. "The CUE Project." in Proceedings of SoftFair, July

1983.

6. Lingard, R., "A software methodology for building interactive tools," in Proceedings of the Fifth
International Conference on Software Engineering, 1981.

7. Mark, W., "Representation and inference in the Consul system." in Proceedings of the Seventh

International Joint Conference on Artificial Intelligence, IJCAI, 1981.

8. Perlman, G., Two Papers in Cognitive Engineering, The Design of an Interface to a Programming

System, and MENUNIX: A Menu-Based Interface to UNIX (User Manual), National Technical
Information Service, AD/A108 929, November 1981.

9. Rashid, R., An Inter-Process Communication Facility for UNIX, Canegie-Mellon University,
Technical Report, March 1980.

10. Stotz, R., et al., SIGMA Final Report, USC/Information Sciences Institute. RR-82-94 and

RR-82-95, 1982.

11. Wilczynski, D., "Knowledge acquisition in the Consul system," in Proceedings of the Seventh

International Joint Conference on Artificial Intelligence, IJCAI, 1981.

12. Yntema, D. B., The Cambridge Project- Computer Methods for Analysis and Modeling of

Complex Systems, Rome Air Development Center, Technical Report, 1973.

19

3. MAPPINGS

Research Staff: Support Staff:
Robert M. Balzer Audree Beal

David S. Wile
Martin S. Feather
David J. Mostow

3.1 PROBLEM BEING SOLVED

Software specification, development, and maintenance continue to present an enormous problem
to everyone involved with computers. We believe that the computer itself must play a far more
significant role in the software development process than it does presently The software designer's
role should be streamlined to require only decision making and guidance, while the computer's is
expanded to include manipulation, analysis, and documentation. The key to such support is to
capture in the machine all crucial information about the processes of specification. design,
implementation, and maintenance.

Informal Spcfcto Formal Opiizto Concrete
Requirements Design Specification Design Source1=:> ~~Prototype]Prga

LI
Figu re 3- 1: Alternative software development paradigm

For several years we have been developing an alternative software development paradigm based on
this tenet [2].) We envision a future user developing a high-level specification of what he or she wants
a program to do, and transforming the specification into an efficient program, using a catalog of
(proven) correctness-preserving transformations (see Figure 3-1). Most debugging and all
maintenance will be performed on the specification, which will have an operational interpretation
suitable for testing. Reimplementation will be necessary to tune implementations exhibiting
unacceptable performance characteristics.

1 Several researchers led by Robert M Balzer. working on proiects funded by DARPA, NSF, and RADC, have provided the
foundations for this paradigm

PREVIOUS PAGE

IS BLANK

20 MAPPINGS

This automation-based paradigm will rely on an integrated set of tools that directly support human
developers in the processes of requirements specification, system design implementation, and
maintenance. It will be characterized by the fact that the entire evolution of a system-the history of
all four of these processes, as directed by the developers-will occur and be recorded within the
integrated environment This history will provide the "corporate memory" of each system s evolution

The software development system will be an active participant in the development process using the
history to determine how these four processes interact: what assumptions they make about each

other, what the rationale behind each evolution step was. how the developed system satisfies its

requirements, and how to explain all of these to its developers

We have developed a specification language. called Gist which formahzes some of the expressive

constructs commonly used in natural language specifications These constructs include
nondeterminism ('a message from another site) descriptive reference (''the longest message).

historical reference ("the last message the user looked at"). constraints ("never send multiple copies

of a message to the same person"). and demons ("if a week passes without a reply to a request.
inform the sender"). A Gist specification describes the behavior of both the program and its

environment this provides a natural way to specify embedded programs that interact in complicated
ways with their environment. Gist's expressive power makes it possible to specify what behavior a

program should exhibit without saying how it should be implemented [4].

Three major problem areas require research and development before our transformation-based

paradigm can succeed:

1. Tools. methods. and support facilities for acquiring designing. anc developing the
specification consistent with a user's intent:

2 Tools. methods, and support facilities for implementing and optimizing the
specification,

3. A framework for understanding, reusing, and maintaining previous specifications
and optimizations.

The primary goal of the Mappings project is to capture program specification, development, and
implementation knowledge in formal transformations: high-level editing commands, high-level

transformations. simp:ification steps, and optimization strategies.

3.2 GOALS AND APPROACH

3.2.1 Overview

Over the years. the group has developed several tools to support the speciflication process. I e . to

help bridge the gap between the informal intent inside the specifier s head and its folrmal expression

in Gist Specifications in any formal language tend to be difficult to understand, because they are

usually concise and lack the redundancy found in natural language descriptions of the same

behavior. Hence. we have designed a program that exposes static aspects of Gist specifications b
paraphrasing them into English [14]. To expose dynamic implications and remote interactions of a

specification. we have developed a symbolic evaluator that looks for interesting consequences of a
Gist specification [5]. and a program that explains the symbolic trace in English 115). By clarifying
what a specification really means, such tools help validate the specification, i e._ increase the

specifiers' confidence that the specification matches their informal intent and the users' confidence
that the resulting system will meet their needs. (For more information on the Gist paraphraser and the

symbolic evaluator, see Chapter 11.)

GOALS AND APPROACH 21

We have discovered that when people specify programs to other people, they use an incremental
technique for conveying the information necessary to develop the program. This technique is built on
a very stylized set of methods, such as refinement of modeling detail, generalization of
functionality, introduction of exception into idealized specification, and restriction of scope or
functionality. In the future, our Mappings project will address the problem of capturing these methods
as formal methods, thus permitting the specification development to appear much more natural to
future readers of the specification. We have called these methods high-level editing commands, to
emphasize the fact that they do indeed change the specification, yet at the same time convey more
information to a reader than conventional keystroke editing commands. The use of high-level editing
commands to design specifications is analogous to the use of transformations to develop
implementations (see Figure 3-1).

Hi h-Level Correctness-
Editing Preserving

Commands Transformations

inomlIMA~wSeifcto Formal 'pIiato Concrete

Renuiremant Dpeigin 1 Specification MM0 SourceRequirementss[Prototype] Program

Figure 3-2: Design process mappings

Since its inception the Mappings project has addressed the problem of representing programming
knowledge in terms of our specification language, Gist, by discovering correctness-preserving
transformations for translating Gist's high-level constructs into the lower level constructs used in
more conventional programming languages. Hence, the Mappings project addresses the second
problem mentioned above: encapsulating programming knowledge in terms of concise mappings
from Gist into alternative implementations. In the future, more emphasis will be given to mappings
for optimization of these implementations. (See Section 3.2.2.)

The Supervisory Control of Transformational Implementation Systems project (see Chapter 12)
developed the system support needed to facilitate the automated implementation of specifications
using transformations. It addressed the third problem mentioned above: the framework for describing
the design activities of specification and implementation. This paradigm is based on capturing the
processes of specification, design, implementation, and maintenance within the computer and
supporting them via automated tools. We have developed an experimental system in which the user
develops not only the implementation, but also a formal explanation of how it arose: the design
decisions, assumptions, optimization steps, and their structural relationships are recorded in a formal
design document suitable for automatic reuse by the transformation system (see Figure 3.2); using
this formal development the system can replay optimizations on a changed specification to
produce a new implementation automatically [16]. Naturally, all future mappings and transformations

22 MAPPINGS

will be designed to fit into this framework. A primary research goal for the future is to support
reimplementations in a follow-on project called Transformation-Based Maintenance.

Decisions
and

Rationale

I
High-Level

Editing Formal Transformations
Commands Development Strategies

Heuristics

InfomalSpecification FomlOptimization_____Cnrt
Requirements o Design Specification Design

[Prototype] Program

Figure 3-3: Formal developments

3.2.2 Mappings for Optimization

During the implementation phase, Gist's high-level constructs (nondeterminism, descriptive
reference, historical reference, constraints, and demons) must be replaced by efficient realizations of
these constructs. The Mappings project has concentrated on discovering and implementing the
general transformations, or mappings, required. More precisely, for each construct, our research
aims to accumulate the following:

" implementation options for converting an instance of the specification construct into a
more efficient expression of the same behavior in terms of lower level constructs;

" selection criteria for deciding among these options;
" mappings to achieve the implementation options via sequences of correctness-

preserving transformations.

We have also begun to implement a language called Will, an automatically compilable subset of

Gist. (This subset was formed by omitting Gist's highest level constructs.) The compilation process is
directed by user-supplied annotations to the program describing what implementations to use for
specific data structures. We intend to use this language as the target language for our Gist mappings
and as our high-level programming language for system development. We want to begin developing
the system in itself, using the transformational programming paradigm. Although we have laid the
groundwork for some of the high-level mappings from Gist into Will, we have found that the lack of
low-level transformations presents an enormous bottleneck to the development of the system in itself.
Hence our attention is currently focused on some quite utilitarian goals to provide the Gist- and
Will-specific mappings and mapping technology needed to produce a usable system in the near term.

GOALS AND APPROACH 23

3.2.3 Mappings for Understanding

We have found that Gist specifications are often difficult to read, despite the high-level nature of the

constructs used. The essence of the problem is that the modes of communication normally open

between people are considerably richer than those between people and machines. We have several
ideas on how this communication gap can be narrowed using high-level mappings for
understanding Unlike the mappings for optimization these mappings often change one

specification into one with observably different behavior.
2

Our first idea is that one's understanding of a specification should evolve rather than arise all at

once The power of prose descriptions derives, in part, from reliance on a reader's incremental
understanding as he goes through a document sentence by sentence, paragraph by paragraph We
believe we can convey such incremental understanding of specifications in terms of high-level
editing commands that formally describe the evolution of Gist specifications. We would like to
support two basic kinds of changes: explicit changes to the specification itself and implicit changes to
the specification expressed as explicit changes to the behavior exhibited.

A second means for enhancing understandability is to allow much more expressive modes of

specification than are presently used. Generally. the formal languages used to describe program
oehavior to machines (i.e.. programming and specification languages) are extremely restrictive and
primitive For example. most journal articles contain tables. grammars, equations, graphs. and other

specialized notations to communicate how a program works or what it does. There is no apparent
reason why computers cannot begin to understand these richer, higher level modes of expression.
We have coined the phrase locally formal notations to describe the specification technique we

espouse. to emphasize that although the notation is self-consistent, it may not be interpreted out of
context. That context establishes an interpretation and allows the notation to be concise. Of course.
these notations must be mapped onto conventional Gist semantics internally.

The understanding conveyed by the high-level editing commands and locally formal notations-to

both human readers and automatic analysis tools-will form a basis for evolving and adapting
software. In fact. within the next two years, such high-level mappings for understanding will

begin to dominate the research goals of the Mappings project.

3.3 SCIENTIFIC PROGRESS: ACCOMPLISHMENTS

Gist area:

Considerable progress along the lines established in previous years was made over this past fiscal

year:

" Transformations to remove Gist high-level constructs. We have developed some
high-level transformations which allow us to remove nondeterminism, to eliminate special
cases of recursively derived relations, and to convert references to historical information
into code which first saves the "literal" information while it is available (i.e., current) and
later retrieves it when needed [9].

" Transformations for rapid prototyping. As an aid to understanding the specification,
e.. to validate that its behavior is what was intended, expedient implementations can be

constructed by choosing adequate implementations for Gist high-level constructs.

2Notable exceptions are the mappings for -rapid prolotyping' described in the Accomplishments section below

24 MAPPIrNG S

These choices need not be optimal but merely fast enough to examine behavior on a
small number of test cases We have called the use of transformat'-nns fo- -,jc r
purpose, transformations for rapid prototyping (61, although they cuffer only in that
their selection criteria need not be developed fully.
Transformations to remove perfect knowledge assumption. Gist s perfect
knowledge assumption allows universal and existential quantification over a vi,,,ai globa:
database of arbitrarily complex relations. lmnlementat'on of such 'elattcns aeu.eS a
theorem-proving mechanism for testing suitability of proposed reaiiza*ir's We 1a..e
begun to experiment with a small set of implementing transformatio'-., and have
constructed a preliminary theorem proving mechanism to test their feasibilty [1D]

Although these accomplishments are interesting technically. the details of the mechanisms are quite
beyond the scope of this report.

However, in the last year the Mappings project has produced several results of more general
interest at a methodological level. Over the past several years we have gained considerable
experience with the design of medium sized specifications in Gist. The Mappings project has played
a major role in the design of Gist: in order to understand the validity of transformations the Mappings
project has attempted to formalize Gist's semantics. This has led to greater understanding of the
specification process and its relationship with both the domain being modeled and the intended
implementation environment.

We are basically happy with the design of the formal Gist language. However, we have discovered
many factors that tend to make the processes of specification, testing, and implementation quite
interdependent In fact, it is the identification of these factors that constitutes a major result of the
Mappings project and leads directly to the future direction the research will take.

3.3.1 Locally Formal Notations

First and foremost, specifications are difficult to construct because they are formal Formalism is
both concise and precise. its construction places demands on a writer which are orthogonal to the
creative design decisions that are being made. Hence, details of form often interfere with the
specification process Such diversion of attention causes errors. We have dealt with this aspect of
specification in the past by attempting to automatically paraphrase the specification into English. In
the future, we hcne to ameliorate this aspect by allowing locally formal notations to be specified, in
which nonessential detail can be left implicit because it can be derived from the surrounding context

3.3.2 Specification Evolution

Another reason specifications are hard to read is because the evolution of the specification is
often the only way to understand what is happening In particular, we have recognized for some time
that numerous implementation decisions enter into the actual functionality specified for programs [1]
For example, any portion of a specification that is present to report error conditions to the user, or
take actions based on error conditions, could not possibly be a part of the specification of the ideal
behavior of the system-why would an ideal system make errors') Hence. at some point in the
evolution of the system, someone realized that the particular implementation that would be used
would necessitate dealing with such imperfect behavior Of course, systems are never ideal finite
resources of both space and time force less than perfect implementations (e g finite stacks heuristic
game playing programs, and out-of-paper status flags) We believe that the best wa, to explain such
a specification is as an incremental modification to the original ideal specification

SCIENTIFIC PROGRESS ACCOMPLISHMENTS 25

In fact, we have identified several categories of high-level editing steps to desc',be how
specifications actually come about, such as refinement, generalization. -pecialization cVceptlor,
introduction, implementation decision, and redundancy introduction We have expermertec wtn
these categories as informal indications of the development of actual programs us ng tre Develop
System [3]. It records design decisions made in the course of developing a prograrr Develop
encourages the developer to classify each design decision into one of thes3 categories and
document it in English. We expect to formalize these notions in the future as a part of the Mappings
project.

3.3.3 Specification Granularity

Another important discovery we made during the last year concerns the domain being modeled in
the specification [7]. An especially confusing aspect of specifications concerns the granularity of
the model. We have discovered that this confusion arises because there are three different axes of
granularity of modeling normally involved:

" Structural granularity deals with the amount of detail the specification reveals about
each individual state of a process: what basic objects and relationships betweer :hem are
to be modeled. Modeling always involves abstraction away from some details. The
choice of which details to include as objects and their relationships is the essence of this
type of granularity.

" Temporal granularity concerns the amount of detail modeled about activities in the
original domain. For example, do we model each keystroke of a typist (full duplex), an
edited version of an input activity (with rubouts and the corresponding erroneous entry
activity invisible), or perhaps the entry of a whole line or file as a single activity in the
domain?

" Coverage deals with the range of possible behaviors permitted by a specification. For
example, in the real world some set of simultaneous events may be impossible, yet the
modeled world may permit the behavior. For example, in the real world elevator doors
may not close when a heavy person is lumping, yet the modeled world does not contain
the constraint (or the information on mass sensitivity needed to discover the fact) This
involves restricting combinatoric effects of the other two types of granularity.

Typically, specification refinements require dropping to a more detailed level of granularity. If a user
is unable to record the evolution of the specification in terms of these layers of granularity.
specifications will be difficult to read and understand by future developers and implementors of the
specification. Hence, once again, we understand directions for our future work in the Mappings
project: to permit an evolutionary description of the specification along these three axes of
granularity.

3.3.4 Implementation Specification

Gist specifications are unusual in that the behavior of an entire system and its environment is
specified: every independent agent who could affect the behavior of the system must be modeled to
the extent that he can affect it. This means that every person and every piece of hardware in the
imagined system must be modeled. It is then the task of the implementor to implement a portion of
the specification as a computer program.

This past fiscal year we have developed a formal definition of the meaning of "implementation" of a
Gist specification, in which a "specificatio,. of the implementation" must be provided separate from
the Gist specification of the functionality of the system Such a specification partitions the world into
the "system to be implemented" and the "environment in which it will be implemented " This partition

26 MAPPINGS

also describes the interface between the two portions i.e., the limits on one portion regarding contro;
or information availability in the other port on Ary implementation which obeys the interface
limitations is said to be compliant

A correct implementation imposes different requirements on these two domains The

environment !s generally autonomous the system must react gracefully to all nondeterministic
activity from the environment On the other hand, tre nondeterminism of the system portion of the
specification can be exploited for efficient implementation: any behavior frum the

nondeterministically specified set is acceptable.

The only problematical issue remaining concerning the implementation specification is in

establishing the appropriate set of interface limitations. The basic issue is transforming a global data
base and globally visible process activity into local data bases of processes with appropriate
communication protocols. Hence. we envision that a portion of our development process will consist

entirely of a paraphrasing activity attempting to make the factoring into environment and system
feasible.

VLSI area:

The Mappings project has attempted to apply the same transformational technology to VLSI design
as to software design. It is clear that many of the complexity concerns are shared between the

disciplines. In some sense, the software dilemma has been bequeathed to hardware designers

through VLSI: they can now conceive of building into hardware, systems that are so complex they
could only have been implemented in software before VLSI! The Mappings project had considerable
success in capturing real hardware designs in terms of the methodology. These designs were

confined to paraphrasing designs previously worked out by VLSI experts. This fiscal year our

accomplishments include the following:

" VLSI as programming constructs. VLSI primitives have been modeled as constructs
in conventional programming languages; hence, they have been made amenable to
program transformation. A germinal transformation system was implemented to illustrate
the applicability of the model to a real example [11, 12].

" Systolic array transformations. A set of symbolic transformations was designed to
translate specifications (written in a canonical style) into systolic array processing
primitives (a widely used subtechnology of VLSI) [8].

These VLSI accomplishments demonstrate the applicability of this transformation technology to the
VLSI domain: in fact, others are beginning to use this technology [13]. No further work on applying

transformational technology to hardware design is planned.

3.4 IMPACT

The specification mappings project is supportive of the transformational implementation software
development paradigm [2]. Initially. this paradigm will dramatically improve programmers' ability to

maintain software systems. ultimately the entire lifecycle from design through specification,
implementation. debugging. and maintenance will be streamlined This will allow programmers to

more rapidly produce and maintain software systems and will make feasible the construction of
larger, more complex systems with enhanced functionality and flexibility. Of course, a major goal of
tne Mappings project is to facitate system maintenance by providing system designers with modes of

expression that make specifications more easily understood and hence more modifiable. In addition.

IMPACT 27

this project will codify the knowledge needed by programmers to convert high-level specification
concepts into efficient implementations via mappings. This knowledge would also be useful for
programmer education independent of its mechanized application via transformations.

3.5 FUTURE WORK

As was mentioned in Section 3.3, we have developed a set of high-level Gist mappings but have not
installed them into the system. We feel their installation should be preceded by developing a large set
of medium- to low-level transformations to provide a sufficient underpinning for their use. Hence. the
goals of the "optimization portion" of the Mappings project are quite utilitarian: they focus on
providing the Gist- and Will-specific mappings and mapping technology for producing a usable
system in the near term. In particular. we intend to reimplement or convert our existing facilities into
the system under development by the Information Management project (see Chapter 4). Of course.
the "mappings for understanding" represent much longer term research goals with consequentl)
less specific objectives Specific future goals include the following.

Implement annotations as transformations.

-To use transformations as the basis for describing annotation methods tc the
compiler These transformations will be added to the set of low-level
transformations which may be explicitly applied and or used by the simplifier.

-To perform both Will implementations and IM coordinations 3 via such
mapping-based annotations.

Integrate software development technology into the Kernel System. The kernel
system being developed for the Information Management project will be used to house all
of our software development technology in the near future. In particular. the
transformation framework [16] is now being converted. The Gist Mappings project's role
in this conversion is twofold: it will be necessary

-to support the efficient execution of Will. which will be used both as the
service-building language for IM and as our systems programming language. This
support consists of mappings to implement Will annotations (see above) and
general manipulations of Will constructs needed for realistic usage.

-to design a more complete set of mappings to allow human-guided efficient
implementation of IM coordination rules (beyond the simple implementation
provided by the annotations mechanism).

" Real system usage.

- To use the transformation system in the development of a substantial piece of itself.
Medium- and low-level Gist/Will mappings must be in place for such a goal to be
met.

* Mappings for Understanding.

-To develop formal high-level editing mappings to express both changes to
behavior and changes to specifications, thus facilitating incremental understanding
by humans and incremental analysis and explanation by machines.

-To develop a framework for locally formal notations, in which context information
selects a semantic backdrop to facilitate concise expression of the important
aspects of the specification.

3 Rules that maintain the integrity of the systems global database

28 .A PPi tN S

REFERENCES

1 Balzer, R.. and W. Swartout. "On the in~evtable intertwining of specification ano
implementation." Cormmun,ca,,cns 9 1e C1, 25. (7). July 1982

2, Balzer. C . Green. and T Cheatham. "Software technology in the 1990 s Using a rev.
paradigm." IEEE Computer. November 1983

3. Balzer. R.. The Develop system. 1983. In progress.

4. Balzer. R., N. Goldman, and D. S Wile "Operational specification as the basis for rapid
prototyping." in Proceedings of ttne Sec'ond Sofrware E-,c;-eerjqC Svincc-,3 .Sr, r,' nco
Rapid Prorot'ypng, ACM SIGSOFT. April 1982.

5 Cohen. D ., "Symbolic execution of the Gist specification language." in F-oceec~rncG of :~ c'
International joint Conference on Artificial Inte"..gence. pp. 17-20, Karlsruhe, Germany, 1983

6 Feather. M.. "Mappings for rapid prototyping.' in Proceeonrgs c' the Seconc S.cfrwa'e
En g nee'rn g Symocsjum: ,orksh~co or P aord P.'otctyptrg ACM SIGSOFT. April 1982

7.Goldman. N.. 'Three dimensions of design development."' in Prcceecincs o,1 Inc Olat.c na"
Con ference on Artificial intelbogence. American Association for Artificial Intelligence.
Washington. D.C., August 1983.

B. Lam. M., and J. Mostow. "A transformational model of VLSI systolic design." in 14:1- 6Srr
lnternationa! Symposium on ComrnDuter HardV,,a'e Descr_-c',r Lanpuage, -c, n. 4 ;z 7;cat.c
pp. 65-77. Carnegie-Mellon University. May 1983.

9 London. P. E.. and M S Feather. "Implementing specification freedoms.' 5ce~ c"py
Pro gram mino 2. (2). August 1982. 91-1 31.

10, Mostow. J . "A problem-solver for mai'ing advice operational." in P'r cee-c......
Con ference on Artificial Intellicence, American Association for Artificial intelligence.
Washington. D.C., August 1983.

11 Mostow. J.. "Program transformations for VLSI." in Procceedi'ngs c'19 tre- ' ', cn
Conference on Arlffici'al lnte'igoenc e. pp 40-43. Karlsruhe, Ger, any. 1983

12 Mostow. J.. "A decision-based framework for comparing hardware compilers.". '.'a '
Systems and Software. (4). 1984.

13 Subrahmanyam. P. A.. Abstraction to silicon. A new design paradigm for special purpose VLSi
systems. 1981. Submitted for publication.

14 Swar-tout W.. "GIST English generator." in P'ccedinps of the Na! c'>Zz: c'n c rtilc a
Intelligence, pp. 404-409. American Association for Artificial Intelligence Pittsburgn, 1982.

15 Swartout. W.. "The GIST behavior explainer," in Proceedings nf ttF tvafc-nai Conle'ence on
Artificial Intelligence, pp. 402-407. American Association for Artificial Intelligence. Washington.
D.C., 1983.

16. Wile, D. S.. "Program developments: Formal explanations of implementations." Communications
of the ACM 26, (11), November 1983. Also available as USC/Information Sciences Institute,
RR-82-99, August 1982.

29

4. INFORMATION MANAGEMENT

Research Staff. Support Staff:
Robert Balzer Audree Beal

Dave Dyer
Michael Fehling
Neil Goldman
Matthew Morgenstern
Robert Neches

4.1 PROBLEM BEING SOLVED

The Information Management (IM) project is designing and implementing a computing environmer,
that significantly reduces the effort required to create. integrate, and evolve computing services, and
enables users to customize these services without detailed knowledge of how they were specified
The basis for such improvements lies in raising the level at which these services are specified and
modified.

Current computational services are functionally limited by several factors. They provide only the
functionality that

" was anticipated by the service designer.
" had a cost-of-provision/benefit-to--user ratio below a certain threshold, and

" could be provided with minimal, and usually no, reliance on the functionality of other
services.

The impact of a designer's foresight is further magnified by the very high cost of modifying that
functionality in response to experience, and by the absence of any significant mechanisms for
individual users to customize the functionality to their individual needs.

This situation is the inevitable result of the state of the art of software production, maintenance, and
execution environments. Disparate services must be implemented with virtually no reliance on one
another, both because their execution environments make communication prohibitively expensive
and because no mechanisms exist for keeping the implementations mutually consistent across the
software life cycle. To significantly customize the behavior of a service, a user requires access to
tools that enable him to find and modify relevant parts of the system definition. Both the tools
available and the level of language used for definition make this impractical for all but the most
sophisticated and persistent users.

The primary task of this project is to implement a testbed software construction and maintenance
environment. The testbed must also provide an execution environment for software constructed
within it. This testbed must make a higher level of specification directly available to system builders
and users without seriously compromising their ability to produce efficient software. Several
office-oriented services will be constructed within the testbed. The testbed must be built within
constraints defined by the following:

" processing speed and data volume required by the testbed services;
" capabilities of the class of hardware we estimate will be reasonably affordable to a wide

range of professionals in the near future;

" the state of the art of compilation technology.

30 INFORMATION MANAGEMENT

A collection of generic information and process modeling concepts suitable for specifying a wide

range of computing services have been identified. Many of these concepts were developed within the

frameworm of the Gist specification language [2] The IM research project must find a means of
delivering these concepts to system designers in a way that supports design, implementation, and
maintenance of practical software In particular, this goal requires the ability to blend specification
and implementation concepts in a single language.

To produce the desired testbed, we must blend existing database and artificial intelligence (Al)

technologies The proposed execution environment consists of a single database of interrelated

objects that are potentially sharable and modifiable by all services within the execution environment.
The database must be self-describing, that is, the declarations that are traditionally considered a

database "schema" must themselves be represented within the database. These declarations
include semantic constraints on the database. The execution environment must ensure the validity of
the database with respect to these constraints at all times.

Services will be specified and modified largely through the use of loosely coupled rules.
Techniques for specifying. compiling, and debugging large collections of rules are being actively

explored in the Al research community. We expect both to use the results of this research and to

contribute to it. Furthermore, since one of our primary goals is to enable users to modify software

behavior, the problem of making rule-based software understandable to people other than its authors
must be addressed.

4.2 GOALS AND APPROACH

The IM project's research aims to increase the productivity of users of a variety of computer-based

services by making it possible to deliver those services in an execution environment that eliminates
service boundaries regularizes basic capabilities across services, and permits personal
customization of service functionality. At the same time, it aims to improve the productivity of those
who design. implement, and maintain these services. Part of this improvement will come from raising
the conceptual level at which these activities are communicated between user and machine, that is,
shifting the software developer's activities more toward specification and away from implementation.
Further improvement will arise from the recognition that the development and maintenance of

software is itself an information management task. Application of the generic techniques being

developed by this project to that specific task will transfer much of the bookkeeping activity inherent
in the development and maintenance of large software systems from designers and implementors to
programs.

Our approach to this task is to construct a testbed system populated with several useful services.
The testbed will be used daily by members of the project and, later, by other researchers at ISI. It will
serve three primary roles:

1. It will provide a means of demonstrating progress to individuals outside the project.

2. It will provide feedback from its regular users on the value and limitations of the
mechanisms it incorporates.

3. It will provide an experimental framework for measuring the viability of proposed
mechanisms relative to the bounds imposed by compilation technology and hardware
capacity.

GOALS AND APPROACH 31

In addition, we expect the testbed to relatively soon reach a state that actually improves our own
productivity in implementing and maintaining the services embedded in it.

This testbed kernel will be implemented in LISP We believe that LISP-based personal workstations
provide the best available tool for carrying out the construction of large and rapidly changing

software systems This development will be done using Symbolics 3600 hardware However, all
software will be written within the confines of the "lnterlisp compatible" subset of LISP supported on
this hardware. The purpose of this decision is to simplify the anticipated porting of the testbed to run
on Xerox 1100 (Dandelion) workstations when they become the ISI "standard" workstation.

The programming of services for the testbed will be carried out not in the LISP programming
environment, but in IM's own programming environment. A few major pieces of this environment,
such as text editing and LISP source code compilation. will be inherited directly from the host system.
The remainder of this environment will be written as an IM service. Service designers and
implementors will view individual elements of their specifications and implementations as interrelated
objects in a database In this form, all the generic capabilities for managing these objects as well as
composite operations built from the generic ones will be available.

We believe that we wiii obtain maximal benefit from this testbed by using it to the exclusion of
alternative computing tools for our daily work For this reason, we also plan to make the testbed
available, at least for administrative computing, from whatever class of remote terminals our users
find necessary Initially, this means providing access to the system from HP2640-class terminals via a

communications server on one of ISIs VAX 11/780 time-sharing systems.

To promote usage of the system. we have selected for our initial services those which currently

dominate our computer usage. electronic mail. document preparation, and LISP software
development. We will provide rudimentary, but useful, versions of these services very early in the
course of the project The members of the project will then begin to use these services as part of their
standard computing environment, and to customize them using the generic capabilities provided by
the IM software environment. Those customizations deemed to be of sufficiently general utility will be
migrated into the "standard release" versions of the services.

4.3 SCIENTIFIC PROGRESS

Progress during the first year of this project consisted of laying out a number of design criteria for
the envisioned testbed and implementing a prototype version.

4.3.1 Specification-based Computing: Generic Capabilities

The specification basis for the IM system will provide a number of gene;ic capabilities with default
implementations and, at least in some cases, alternative implementations that may be chosen by the
specifier All these generic capabilities revolve around the use of a data model that can be likened to
the "semantic schemas" of database systems like McLeod's SDM [10] or the "concept network" of an

artificial intelligence representation language like KL-ONE [3]. The data model provides the following
capabilities to our framework:

* It provides a collection of constraints on potential states of the actual data environment.
It thus provides protection against certain kinds of errors tf' l-ould be made in creating
or changing the data.

id

32 INFORMATION MANAGEMENT

* It can be used to find potential problems in the software that manipulates the data Any
program, such as a compiler, that analyzes software can point out discrepancies between
the data model and assumptions implicit in the software

* It can be used to select efficient default representations for differer t classes f data.

The IM computing environment permits people to create and modify data models. tc perfcrr.
operations that map from one instantiation of a model to another and tc explore a g,ver, nstantiatior;
of a model.

Se,,eral essential generic facilities will be providec for the II user. ..ne SLJ..t h.1it) is a unifcrn.
ability to retrieve information by desc - . rather tran r ll[v. ., Lecr on: .nc. construcLed
from the terms defined in the data model. mar e 1! possible tc generate collectiir o' cata units :-,Lt

jointly satisfy some condition. For example, the expression

an EMPLOYEE 11 EMPLOYEE OFFICE FLOOR = 10

constructed from the type EMPLOYEE and the attributes OFF CE and FLOOR can be used to
generate those employees whose office is on the 10th floor.

Another generic facility is the ability to create and oest'o, data units and re!at;onshps between
them. Again. these operations are specified using the terms define in the data mou! For example
if E is any expression denoting an employee, the statement

update E. PRIMARY-PHONE to 875

could be used to change the value of the PRIMARY-PHONE attribute of that employee to 875

A third generic facility is the ability to alter the behavior of the environment through ,,.e -

Rule-based activity will be predicated on the occurrence of some parameterized condition. I e.. a

description. Some rules will be used to maintain the coos.st '., o the data Such rules are best
thought of as extensions to the data model that allow a specification of interdepenc'encies among
data elements. In general, a consistency rule specifies some transitio' to the databast- that might
violate consistency. and some repair procedure that can reestablish consisenc it it v as in fact
violated. Constraint equations [11] provide a higher level means of specifying cons~stenc rules for a
limited but commonly occurring class of situations, Abstractly. a constraint equation permits the

expression of a consistency condition by equating two expressions over a common set of variables
Analysis of these expressions determines the possible tre'stia- s that could violate the condition
Annotations to the expressions specify nonprocedurally the desired means of repairing the
consistency condition when it is violated. For example,

EMPLOYEE. BACKUP-PHONE = EMPLOYEE. SECRETARY PRIMARY-PHONE

is the textual representation of the consistency condition ",i employ~es backup phone must be the
same as the primary phone of the employee's secretary" This condition could be violated b-
transitions involving backup phone, secretary, or primary phone attributes Annotation of this rule to
read

EMPLOYEE ! BACKUP-PHONE = EMPLOYEE . SECRETARY' PRIMARY-PHONE

constitutes a specification of the repair method to invoke upon volation of that condition. The .' on
the left side of the equation indicates that an employee's backup phone attribute mab be changed to
restore consistency if the violation was caused by a change to one of the reiatonsrilps on the right
side of the equation. Analogously. the "'" on the right side specifies that a violation caused b, a
change to an employee's backup phone may be repaired b changing that empe cee s secretary S
primary phone (but not by changing the employee's secretary)

SCIENTIFIC PROGRESS 33

Other rules will be used to automate activity that would otherwise have to be mediated by some
human user of the computing environment.

The final generic facility is a uniform interactive interface to the other generic facilities [12]. It will be
possible to interactively extend and modify the data model, build descriptions as a means of retrieving
information, create and destroy data units and relationships, and install rules to alter the behavior of
the system.

We note that, to provide these facilities, it is crucial that the components of the data model, the
descriptions, and the rules themselves be modeled concepts. Thus our system must be what is
commonly termed "self-describing."

4.3.2 Interactive Use of Computing Services

The fundamental activity of an IM user is to take some given data model and an instantiation of that
model and either explore ramifications of that instantiation or compute a new instantiation. The
interactive user is presented with a computing environment consistng of a database of interrelated
objects, and operations that can be performed for any of the following purposes:

" changing this environment by creating/destroying objects or creating/destroying
relationships between objects. thus producing a new instantiation of the data model.

" interacting with the environment outside this database including I/O devices connected
to the user's workstation In particular, the moment-to-moment content of the user's
display device will be defined by user-selected or user-composed descriptions of the
information to be presented The oisplay will be dynamic in that the displayed information
will change to reflect changes in the database from which it was derived

" making requests of other users' environments.

Service boundaries do not exist in an IM system. All communication between modules (on a single
workstation) is done by passing direct or descriptive references to objects in a global shared data
space. It is still possible for modules to provide stream- or file-based communication interfaces, but
the interservice boundaries across which such protocols are required have been removed Some
interactive communications will still be text-based, although po,nting at representations of
information objects will replace textual reference in a pervasive way Also. because there are no
service boundaries, it will always be the case that any visible representation of an information object
can be pointed to when interactive reference to that object is required, regardless of whether the
reference was anticipated by the module that produced the visible representation of the object. This
capability is in contrast to some workstation "window" eivironments that tie windows to processes in
such a way that a user cannot provide input to a process connected to one window by pointing at an
object in the window of some other process.

4.3.3 Software Construction and Evolution

Another use of the IM computing environment is to extend the data model that the environment
instantiates. In IM, this activity is not formally differentiated from the activity of using any other
capability of the environment. The user of any set of capabilities views those capabilities as
consisting of operations, rules, and data abstractions that he has learned to use in certain ways to
achieve certain results. The developer/extender of those capabilities views them as information
objects to be manipulated by other operations, rules, and data abstractions-his programming
environment. In the case of IM, what the interactive user described in the previous section treated as
a model, the software developer is treating as the instantiation of a different model.

34 INFORMATION MANAGEMENT

In some advanced programming environments program objects can be treated as data and
manipulated by the operators of the programming language (g. Interlisp [14], Smalltalk [6], and
Cedar [51). The main benefit these environments provide to the programmer is management of
several significant kinds of consistency:

" between source code definitions and active (Installed) definitions
" between source versions and compiled versions of modules:
" between definitions and usages.

While the programming environments mentioned above do not enforce these forms of
consistency-indeed strict enforcement may not be desirable-they record where inconsistencies
exist (relieving the programmer of the bookkeeping task) and thus make it relatively easy to
reestablish consistency when desired. Because consistency mo'ritoring is a generic IM facility, the
above-mentioned examples of consistency, and others deemed important for software
development/maintenance, need not be programmed on an individual basis. What is necessary is the
identification of consistency conditions relevant to the programmer: once identified (specified), the
necessary monitoring activity is provided without additional programming.

The second way in which programming environments aid the software developer is provision of a
database and query facili Wy regarding the software itself (exemplified by the MASTERSCOPE and File
Package facilities of Interlisp [14]), But this is an instance of precisely the activity that IM provides
generically for all computing activity-it does not need to be specially provided for software
development. Since IM's generic facilities include modification as well as query of its database.
modification of software can be accomplished by applying the geniic capabilities to software
objects.

Several key ingredients are needed to achieve the desired support for software development:

• modeling of software components in the IM database;

- identification of important consistency rules for software components;
- identification of composite views of software that are relevant to software developers: and

- identification of common composite operations on software components.

In support of our contention that software development is really very much like other IM capabilities.
we point out that these four ingredients are the same ones we expect to deal with when adding a
cluster of capabilities for any new domain of activity.

The argument that IM software will be easier to evolve than conventional software is founded on the

specification basis of IM software. Software behavior is defined by a declarative model, by operations
defined in terms of generic capabilities, and by rules. The implementation of the behavior so defined
is carried out by the system (in some cases with guidance from a "programmer" in the form of
annotations to the model). Systems so specified will, we believe, be more /oosely coupled than
conventional software. That is, the change to a specification needed to effect a given change in the
behavior will be localized in a specification relative to an implementation. However. the coupling of
assumptions that occurs in implementation will be recorded and managed by the system rather than
by the implementor. Not only should there be less to change in order to alter the behavior of a loosely
coupled system, but it should be easier to find the locus (loci) of the necessary changes. The
simplification will follow in part because specifications embody concepts that more directly
correspond to those we want to use in describing system behavior, and in part because IM can use
histories to attribute observed behavior to existing specifications.

SCIENTIFIC PROGRESS 35

4.3.4 IM Prototype

The second major accomplishment during this year was the implementation of a prototype version
of an information management system This prototype was first developed in Interlisp-10, running on
both DEC KL-20 and VAX 11/780 hardware with HP2640 terminals. It was then ported to run on
Symbolics Lisp Machines within the Interlisp compatibility package supported by Symbolics. Within
the prototype a small demonstration service was built This service houses data concerning 150 ISI
employees, their offices, their business phones, and their ARPANET mail addresses.

This prototype implements a number of the generic capabilities we desire in our system:

SOb ec,'s can be created and classified within a lattice of types.
SATr.rbutes may be defined to relate these objects. Each attribute may be constrained to
permit it to relate only objects that are classified within specified types. Once created and
classified, objects may be related to one another with these attributes.

* Descro!itons are used for several purposes. Objects may be found by associative
retrieval from the database, where a description specifies the conditions for retrieval
New objects may be created so as to satisfy a given description. Existing objects may be
a'teeci so as to satisfy a given description. A description is itself an object whose
behavior with respect to object retrieval, creation, and modification is determined by its
relationship to other objects and descriptions.

" RLes may be defined for automatically maintaining consistency among the relationships
between objects and for automatically invoking arbitrary processes (programmed in
LISP) based on conditions specified in terms of the types and attributes,

" Views may be specified to control the display of objects. Any number of views may be
associated with a given type. Within the prototype, a view specifies which attributes of an
object are to be displayed, and in what order. It may also specify, independently for each
attribute, the view to be used in displaying the value of that attribute, The system
autonomousls maintains two default views for every type: one to display all possible
attributes of an object of that type, and one to display the attributes specific to that type
but not those inherited from supertypes. The views displayed on the user's terminal are
dynamic, in that the display of any information is automatically updated if that information
changes in the database.

We implemented an interactive interface for the prototype, permitting a user to refer to an object
either via text entered from the keyboard or by pointing at a representation of the object on the
display. Pointing is accomplished with "mouse" hardware on the Lisp Machine, and with cursor
positioning on the HP terminals. Generic operations (including interactive browsing) and
service-specific actions are selected from menus in the Lisp Machine interface, and by keystrokes
interpreted through a command table (in the style of the text-editor EMACS) in the case of HP
terminals.

4.4 IMPACT

A successful conclusion of our research effort will result in more tightly integrated and evolvable
systems, produced with fewer man-years of effort. The integration will arise by composing
-,,pabilities from a collection of generic, universally accessible concepts. The ability to evolve
capabilities over time will result from the specificational basis of all capabilities in the environment
Both properties will contribute to productivity enhancement, both in what is traditionally thought of as
system construction and what is traditionally thought of as system use.

As a side effect of this primary impact, it should become possible to produce systems with
functionality beyond what is achievable from current programming environments Evolvability will
make it economical to provide community-wide or user-specific upgrades to functionality not

36 INFORMATION MANAGEMENT

anticipated by a service designer Ease of sharing and specification-based software will reduce the
cost of providing a given piece of functionality, encouraging service designers to provide additional

functionality in their original designs.

4.5 FUTURE WORK

Bridging the gap between the existing prototype and the desired testbed requires advances in four
areas: extending the base of specification concepts for building and maintaining software, enhancing
the ability of system designers to control the implementation of their specifications, populating the
testbed with useful computing capabilities, and improving the user interface for both the service
building and execution activities

4.5.1 Additional Specification Concepts

The existing specification basis for our IM system consists of a restricted subset of the concepts we
developed for the Gist specification language. Certain other concepts from Gist are candidates for
inclusion in IM. In particular, we intend to introduce some notion of events, which can be used to
record a history of computing activity. The ability to record a history of system behavior in terms of
events defined by the data model will support several capabilities of interest to users.

* It will enable the attribution of observed behavior to the pieces of the data model and to
rules that are responsible for that behavior.

* It will enable retraction ("undoing") of certain activity and its consequences when it is
discovered after the fact that the activity produced undesirable results.

* It will provide the basis for more descriptive triggers of automation rules,

Another extension to the specification base of IM will be the modeling of procedural knowledge
Whereas our existing design deals in detail with static descriptions of the possible instantiations of a
data model, it does not address the description of the possible temporal sequences of model
instantiations. That is, IM currently provides "specification" level language to define how the world
"is." but "program" level language to describe how it changes. Gist includes many specificational
constructs dealing with temporal issues. These will be one source of enrichment of IM's
terminological base.

4.5.2 Implementation Control

IM will provide the capability to compile and execute any service specified within its service
definition language. This capability will result from functionally adequate "default" implementations
of each construct in that language. IM will also provide the ability to annotate service specifications
so as to select alternative implementations. This is similar in spirit to capabilities that have been tried
in Prolog [4] and SETL [13]. IM's m.chanism for delivering these capabilities will be technology that
nas been developed over the past few years in ISIs Transformational Implementation (11 and Mapping
[8] research.

At the lowest level of the implementation, we expect a revised database representation to increase
object locality, thereby reducing both the execution time for database searching operations and the
paging time for the most common kinds of data access. This will improve the efficiency of our most
prevalent default implementations.

FUTURE WORK 37

An example of the form of annctation to be provided is the ability for a specifier to indicate, for a
given piece of derived data, whether that data is to be derived on request, explicitly maintained at all
times, or derived and cached. Relevant technology for implementing the latter two alternatives can
be adapted from truth maintenance systems [9]

4.5.3 Computing Capabilities

Enhancement of capabilities will take place both in the area of additional generic facilities built from
the primitive specification concepts, and in specific services.

The most significant near-term extension to the functionality of the IM kernel will be support for
session continuity. We intend to provide a convenient way to specify a subset of a database to be
saved in a permanent form so that it can be restored into a different database at a later time.

In order to ensure a useful computing environment at the termination of th;s work. and to derive
feedback as the work progresses, we will be integrating several office-work-oriented capabilities into
the testbed as it evolves. These will include electronic mail, text editing, and document preparation.
all of which will make significant use of existing software support for these services.

4.5.4 User Interface

Improvements to the user interface are expected from two sources. ISI's CUE project (see Chapter
2) is building a forms-based interface [7] that Ne plan to integrate into our testbed within the next
year. This provides substantially higher level management of interactive I/O than we currently have
available. IM research in the area of user interfaces will focus on providing relevant tools to enable a
system designer to effectively use the screen management capability of the CUE interface.

REFERENCES

1. Balzer, R., C. Green, and T. Cheatham. "Software technology in the 1990's: Using a new
paradigm," IEEE Computer, 1983.

2. Balzer, R., N. Goldman, and D. Wile, "Operational specification as the basis for rapid
prototyping," in Proceedings of the Second Software Engineering Symposium: Workshop on
Rapid Prototyping, ACM SIGSOFT, April 1982.

3. Brachman, R., A Structural Paradigm for Representing Knowledge, Bolt Beranek and Newman
Inc., Technical Report, 1978.

4. Clocksin, W. F., and C. S. Mellish, Programming in Prolog, Springer-Verlag. Berlin, 1981.

5. Deutsch, P., and E. Taft, Requirements For an Experimental Programming Environment, Xerox
Palo Alto Research Center, Technical Report CSL-80-10, June 1980.

6. Ingalls, D., "The Smalltalk-76 programming system: Design and implementation," in Fifth ACM
Symposium on Principles of Programming Languages, ACM, 1978.

7. Kaczmarek, T., W. Mark, and D. Wilczynski, "The CUE project," in Proceedings of SoftFair, July
1983.

8. London, P. E., and M. S. Feather. "Implementing specification freedoms," Science of Computer
Programming, (2), 1982, 91-131.

38 INFORMATION MANAGEMENT

9. McAllester. D., Reasoning Utility Package User's Manual, M.I.T. Artificial Intelligence Laboratory,
Al Memo 667. April 1982.

10. McLeod, D.. A Semantic Data Base Model and its Associated Structured User Interface,

Ph.D. thesis, M.I.T. Laboratory for Computer Science, 1978.

11. Morgenstern, M., "Active databases as a paradigm for enhanced computing environments," in

Proceedings of the NintP International Conference on Very Large Data Bases, 1983.

12 Neches, R., R. Balzer, D. Dyer, N Goldman, and M. Morgenstern, "Information Management: A

specification-oriented, rule-based approach to friendly computing environments," in

Proceedings of the IEEE Conference on Systems. Man. and Cybernetics, 1984.

13. Schonberg, E., J. T. Schwartz, and M. Sharir, "An automatic technique for selection of data

represenations in SETL programs," ACM Transactions on Programming Languages and

Systems 3, (2), April 1981, 126-143.

14. Teitelman, W., Interlisp Reference Manual, Xerox Palo Alto Research Center, 1978.

I _____

39

5. INTERNET CONCEPTS RESEARCH

Research Staff: Research Assistants: Support Staff:
Jon Postel Alan Katz Ann Westine
Danny Cohen Dave Smallberg
Carl Sunshine
Paul Kirton'
Paul Mockapetris
Greg Finn
Annette DeSchon
Jim Vernon

Joyce Reynolds

5.1 PROBLEM BEING SOLVED

The Internet Concepts Research project extends and enhances computer communications This
work is based on the ARPA Internet, a system of interconnected computer communication packet
networks. The rules of communication (or protocols) are the key element in successful computer
communication. The ARPA Internet has working protocols for communication between
heterogeneous computers via an interconnected collection of heterogeneous packet networks.

This research involves work at several levels, host-to-host and gateway-to-gateway protocols and
applications protocols The basic protocols are largely complete now. but a number of extensions are
being explored to integrate and extend the packet networK technology. In the gateway and host level
protocols, these extensions include mechanisms and procedures for monitoring and maintaining
performance and survivability, for allowing growth of the Internet. and for dynamic control of the
Internet. In the applications level protocols. the focus will be on new uses of the Internet such as
multimedia mail and new capabilities in the gateway protocols

Another iml.,rtant aspect of the development of protocols is to investigate their correctness This
research studies the Transmission Control Protocol (TCP) using several protocol verification tools.

5.2 GOALS AND APPROACH

The long-term goals of this research are to provide appropriate and effective designs for the
primary user service applications in the internetwork communication environment The designs are
based on a set of host and gateway level protocols that provide the full range of service
characteristics appropriate to a wide variety of applications and that have been specified and
analyzed to ensure their correct operation.

Our approach has been to pursue in parallel the analysis. application, and design of protocols. The
interaction of these activities provides valuable insights into problems and potential solutions

1Visling Scholar supporled by Telecom Ausiraiia

40 INTERNET CONCEPTS RESEARCH

We have identified several program and protocol analysis tools and techniques that show promise
of being useful in the study of protocols We have explored the value of these tools and techniques
by applying them to a series of example protocols The example protocols incorporate features of the
TCP,

We have selected computer mail as the application to use as a focus for demonstrating internetwor,

servi:e Within this application area we are developing two distinct mail systems, a Text Mail system
and a Multimedia Mail system.

The Text Mail system has evolved from the long existing ARPANET mail system. Our contribution to
tn~s multi-organization activity focuses on the design and initial implementation of the TCP-based
S,mple Mail Transfer Protocol (SMTP)

The Multimedia Mail system is an experiment to learn about the future direction of computer mail
systems The goal is to provide mechanisms for computer-oriented data structures to communicate
va',ous types of data in messages including text, graphics, and voice.

In 0oth mail systems our interest is primarily the communication mechanism rather than the user
interface

We have assisted in the design of several protocols in the Internet family. The areas of addressing.
ro,;ting and multiplexing are particularly subtle and require careful attention. We have concentrated
or these areas and have explored many options in technical discussions and memos Our approach
is to develop an understanding of these technical issues and to advocate the inclusion of
general-purpose supporting mechanisms in the protocol specification.

5.3 SCIENTIFIC PROGRESS

5.3.1 Protocol Analysis

This year we completed our investigation of protocol verification We used two example
protocols-the Alternating Bit protocol and the "three-way handshake" of TCP-to investigate the
capabilities of four verification systems: Affirm, Formal Development Methodology (FDM a!so known
as Ina Jo), Gypsy, and the State Delta system The work described here represents the conclusion of
our protocol verification work. Short reports on this material may be found in [16.20] A summary of
all work done in this area and a complete list of reports produced may be found in (9]

The four automated verification systems we studied were chosen for a combination of factors,
including initial estimates of quality, significance, representation of important approaches. and
availability to us. Our major interest throughout this work has been on design verification rather than
code or implementation verification. Hence we have attempted to develop "abstract" specifications
for the services and entities of a given protocol layer and to prove that the combined operation of the
entities plus the lower layer service has certain properties or meets some service specification We
have been less interested in the problem of verifying that a specific program or code correctly
implements a protocol entity.

A uniform set of example protocols were employed with each system. These were the well-known
Alternating Bit protocol (in a form including arbitrary message loss and retransmission) and the
three-way handshake connection-establishment protocol from the DARPA TCP [12]. The former

SCIENTIFIC PROGRESS 41

served to test capabilities of the systems to handle "data transfer" type functions, while the latter
served to test control functions.

Our goal was to evaluate the ability of existing automated verification systems to provide useful
results in the domain of communication protocols. We did not expect to discover errors, since the
protocols used as examples were quite mature, although our work with Affirm did reveal an obscue
bug with the three-way handshake [10]. The bug has since been corrected.

5.3.1.1 Affirm

Affirm includes a specification language based on the theory of abstract data types, a verification
condition (VC) generator, and an interactive theorem prover for proving properties of specifications
or of programs [7]. There is also a library of already specified types (e.g., queues, sets) and their
properties that may be used in building new types.

The basic modeling approach used with Affirm is to specify each protocol entity as an abstract
machine data type. The state variables become "selector functions" of the type, and the inputs or
commands become "constructor functions" of the type. A set of axioms must be given to define the
effects of each constructor on the selectors (i.e., the effect of an input on the state variables). Thus.
there is a relatively straightforward translation of an abstract machine into Affirm axiomatic data type
specifications [8].

Properties to be proved were then obtained from the service specification or developed informally.
They were entered as theorems along with the specifications, and were proved interactively.

Specifications for an abstract machine were relatively easy to develop in Affirm once the basic
approach was developed. However. they were rather tedious to enter at first since an axiom had to be
explicitly provided for each state variable/event pair Many of these were "no-change" axioms, and
eventually a language construct was developed to fill in all no-change axioms so that only
"interesting" axioms had to be explicitly specified.

Affirm was very good at supporting hierarchical use of data types (i e.. making use of instances of
other independently defined types such as queues or records). Composition of separate
specifications within a protocol layer was not supported. however, and a giobal model of the layer had
to be prepared.

The theorem prover of Affirm is undoubtedly the most polished of the automated tools sampled.
offering a number of useful features including good command syntax, maintenance of good proof
histories, flexible movement around the proof tree. ability to 'undo" undesired steps. and a well-
debugged and well-documented system with online help facilities Nevertheless, proofs were often a
tedious business, because the system forces the user to provide a complete proof. and many cases
are similar or mechanical. Greater initiative in completing proofs on its own would be welcome, but
this is quite a challenging problem.

In the Alternating Bit protocol, theorems to be proved were derived by "mapping down" a formal
service specification. For the three-way handshake, a correctness theorem was derived informally
Both cases required an iterative process of changing theorems and specifications until some of the
subtler points of what the system was expected to do and how it accomplished it matched In
particular, inability to prove the original connection-establishment theorem revealed both a bug in the
protocol and an unrealizable service expectation [10].

42 INTERNET CONCEPTS RESEARCH

The proof process typically involved development of numerous lemmas to structure the proof. That
is, relatively high-powered lemmas had to be formulated in order to prove the top-level theorems, and
these in turn had to be proved from lower level lemmas and ultimately from the protocol specification
This may be viewed as development of the "theory" of the protocol "type" in question. The flexibility
of Affirm to introduce lemmas in the course of a proof, and to keep track of proof dependencies while
letting the user tackle problems in any order, was extremely helpful.

Affirm runs on DEC TOPS-20 and is implemented in Interlisp.

5.3.1.2 Formal Development Methodology (FDM)

Our main interest in FDM was its explicit support for abstract machine models. Thus we expected
that it would be easy for us to specify our example protocols. already formulated in terms of an
abstract machine model. We also hoped to use the explicit mapping constructs in FDM to do
hierarchical proofs showing that a protocol implemented its service Finally, we wished to experiment
with the automated tools associated with FDM, particularly the Interactive Theorem Prover (ITP), to
assess their capabilities.

As in Affirm and Gypsy. FDM includes a specification language (Ina Jo). a language processor, a
verification condition (VC) generator, and an ITP. The system is specifically intended to model
hierarchies of abstract machines, with mappings from higher to iower layers defined, The language is
an extension of predicate calculus with some built-in data types (integers, booleans. enumerated
sets, lists, records), and it allows the definition of new subtypes and combinations of these types [4].

The basic unit of specification is an event (called a "transform") for which the effect on all state
variables must be defined. "No change" is assumed for all variables not mentioned Properties to be
proved about the highest level specification may be conventional invariants (called "criteria") and
may also include "constraints" relating the values of state variables before and after an event. (We
did not find a need for constraints in any of our protocol examples.)

The Ina Jo language converts specifications (including properties to be proved) into theorems to be
proved, one for the initial conditions and one for each transform stating that the properties are
maintained. All proof is by contradiction, so these theorems are in a form such that a contradiction
must be shown between the hypotheses and all disjuncts of the conclusions. Thus the ITP is more
specialized than in Affirm, with induction (over the transforms) and proof by contradiction built in
The prover also automatically generates a number of "corollaries" to each expression resulting from
a proof step, based on a large set of built-in facts about the basic types and operators of the
language, Either the direct result or any of these corollaries may be used in further proof steps.

It was indeed convenient to write state transition type specifications in Ina Jo, so long as only
relatively simple data types were needed. The translation from Affirm specifications to Ina Jo or vice
versa is quite straightforward for the type of specifications used. Terse operator syntax reduced
understandability by relatively new users but was felt to be advantageous by some experienced users

Efforts to construct formal mappings from service level to protocol level for the Alternating Bit
protocol were unsuccessful, because a nondeterministic mapping was required to represent the
faulty medium. Ina Jo supports only the fixed mapping of a higher level transform into lower level
transforms However, this is a common weakness of most systems supporting formal mapping. In
other kinds of systems the mapping constructs (where they are applicable) have proved quite useful.

SCIENTIFIC PROGRESS 43

The proof process i Ina Jo is more specialized. induction and proof by contradiction are built into
the specification processor and ITP. which produce theorems to be proved false Our experience
with Affirm shows that in some cases invariants can be usefully simplified before induction is
employed ehminating identical steps in each induction case In the ITP, the proof-by-contradiction
method prcec a conenient va) to brea, down proofs into components. The subcase selector
commands were also well developed. Automatic generation of cor:,' aries was a mixed blessing
since mans were not used. bui those that were used came for free "

A serious shritcoming in 1,a Jo is the recuirerment that a lemmas to be used in a proof must be

eitner ntrocuced before the proof is starled or proved at their point of introduction This makes the
Kind of p'oof development process that is inevtabl. necessary in a complex system hignl, frustrating
and tedious This is al the more true since there is no effective wa. to 'repla - the commands of a
previous proof effort other than by retyping them

FDM was developed by the System Development Corporation. It runs or an IBM 4331 VM/370

system and is based on a LISP-like proprietary compiler writing system called CWIC. "Ina Jo" is a
registered trademark of the System Development Corporation.

5.3.1.3 Gypsy

Our main interest in Gypsy was its orientation toward buffer history type specifications with no
explicit internal state variables. We also hoped to exploit the modular proof capabilities of Gypsy so
that only those portions of a proof affected by changes would have to be redone.

Gypsy is a Pascal-based language with extensions supporting concurrent processing and program
verification [3.13]. The language encourages program modularity by forbidding global variables. Al;
interprocedural communication must take place through parameters. A procedure may start up the
parallel execution of other procedures. These processes may communicate only through shared
message queues called buffers. A process may send a message to or receive a message from a

buffer and will block if the buffer is full or empty. respectively.

To allow verification that a program performs the task it is supposed to perform, assertions may be
attached to each procedure. An entry assertion must hold whenever the procedure is invoked an exit
assertion must hold whenever the proc,-dure terminates and a blockage assertion must hold
whenever execution of the procedure is blocked waiting to send to or receive from a buffer Gypsy
enforces modular specifications by requiring that these external assertions not refer to internal
variables of the procedure; instead, they must be expressed in terms of the procedure's parameters

A procedure is proved to meet its external specification by the standard inductive assertion method
Every loop must contain an assertion which holds ever, time it is encountered during program
eyecution A VC generator fcllows ever path through the program from one assertion to another
generating VCs vhich, if true. ensure that the procedure meets its specification. If the VC generator
encounters a procedure call along some path. that procedures entry condition must be checked and
its ext assert on may then be assumed When an operation is encountered which could cause the
procedure to block, a VC is generated saying that if the operation blocks, then the procedures

blockage assertion holds.

The VC generator can prove only trivial VCs by itself Others are left for the human user to prove
with the assistance of the Gypsy theorem prover The prover performs expression simplification

44 INTEPNET CONCEPTS PESEARCH

automatically, but most other tasks (such as substitution of equalities case splitting, and chaining on

implications) are best done with human guidance (There is a command which instructs the prover to

try these techniques on its own, but the command doesn't usually work effectively until the last few

steps of the proof) The user may introduce lemmas at any point in the proof

Specifications for Gypsy programs involving conc,.rrent processes usually contain assertions about
the sequences of messages that the processes send to or receive from their message buffers Gypsy

supports the user in making and proving statements about tnese buffer histories There is no support.

however, for histories of program states, so in general it is impossible to make assertions about

liveness properties in Gypsy For this reason we considered only safety properties in our

specifications of the Alternating Bit and three-way handshake protocols

Unlike the other systems we worec with. which require nonprocedural formulations of

specifications, Gypsy encourages the user to wrte spe-ifications as programs at least fo, concurrent

systems This is because the way to specify a multiprocess system ,n Gypsy is tc aefine an overall
procedure with the individual processes in a Cobegin statement and their interconnecting buffers

specified as parameters Then the VC generator automatically manages the details of building

theorems about a parallel program from the assertions describing the behavior of each component

process.

By its restrictions on interprocedural communication. Gypsy encourages its users to develop
modular specifications At times, however, we felt that Gypsy imposed a little too much modularity

The prohibition against global variables sometimes required the introduction of extra variables in

order to state properties to be verified For protocols with many states. we found that the requirement
that our exit assertions be written in terms of buffer histories forced us to restate in functional form
the state transitions which had already been expressed as program text.

The implementation of Gypsy is continually being improved. We noticed that some of its limitations

vanished during the course of our research. The major limitation of Gypsy for protocol specification

and verification is that liveness properties cannot even be stated, much less verified.

Gypsy was developed at the University of Texas and runs on a DEC TOPS-20 system under ELISP.

5.3.1.4 State Delta

Our major interest in the State Delta system was its ability to perform symbolic execution to

accomplish proofs without user guidance This was very attractive after our often tedious experience
with interactive provers. We were also interested in testing whether the explicit time bounds

supported in state deltas would facilitate proofs and allow the handling of progress properties as well

as safety.

Because the State Delta system was in an early prototype state of development and hence was

rather cumbersome and difficult to use, our experiments were quite limited. First we give some

background, then we discuss the results of these limited efforts.

The State Delta system includes a specification language and a symbolic execution system and

simplifier for carrying out proofs [2]. The initial system covered only a single sequential process, but
recent extensions to "concurrent state deltas" (CSDs) have been made by Overman [11,15]. The

basic unit of specification is a CSD which gives a precondition, a postcondition, a read list, a mod list,

SCIENTIFIC PROGRESS 45

and time bounds. The meaning of this CSD is that if the precondition ever becomes true, then at
some future time within the specified time bounds the postcondition will be true. and in the interim
only the variables on the read list will be referenced and only those on the mod list will be modified
There is also a Wait construct. which specifies a delay until either a given condition is satisfied or
some maximum time transpires. with postconditions for either case

Higher level specifications are themselves CSDs Proof proceeds by determining which lcwver level
CSDs are enabled (have true preconditions) from the preconditions of the high-level CSD and then
symbolically executing all the low-level CSDs keeping track of time and generating a:. possibie
interleavings of CSDs that are simultaneously completed in different processors An conflict in the
use of shared variables is noted, and the proof succeeds if the symbolic execution necessarily leads
to a state satisfying the high-level CSD's postconditions (and read list. mod list and time bounds)

Unlike the other proof systems described, which are interactive, the symbolic execution is
completely automatic and requires no user aid In practice, however, system resources are
exhausted for specifications of any complexity, and the user must provide some appropriate
intermediate CSDs to force pruning of the proof tree (identical states reached on different branches
are not recognized unless explicitly entered as intermediate CSDs). Induction is not directly
supported and must also be introduced explicitly if needed, for example. via a loop CSD.

The CSD system is the only one to include time bounds and hence to be able to deal with progress
concerns simultaneously with safety. If a proof succeeds. it shows that the goal is reached in the
specified time (if any), not merely that the goal may be reached. The time bounds may also be used
effectively to eliminate paths from the execution tree that would otherwise have to be considered
(e.g., specifying that retransmission interval is greater than transmission delay). However. the
inclusion of time bounds also complicates the symbolic execution and so is not always practical.

The basic flavor of CSD specifications is quite different from that of an abstract machine with atomic
events separated by long periods when nothing happens. With state deltas. the events have a definite
duration and the atomic points in time are their completion/commencement. State variables may
change values during a CSD, since only their values at its completion are specified. Since the
symbolic execution traces give the sequence of CSD completions, it is difficult to compare them with
the state reachability graphs of conventional abstract machine models.

Another limitation of CSDs is the requirement that exactly one CSD be firable at any moment within
a single processor. This causes difficulties in modeling nondeterministic behavior such as the
condition when both a user input and a message from the network are queued for processing by an
entity.

The CSD system is in an early stage of development and hence is still rather clumsy to use. There is
little documentation, and only the system's implementors are really capable of using it. T te
specification language is simply LISP expressions with a barlicular form required s nput of
specifications is rather painful If a small portion of the specific:ituo is changed, there is nc capatlilt.
to determine which portions of previous proofs might be Unaffectec and thus avoid repeaing them

For simple cases, where the CSD system can complete a proof automatically. it is clearly superior tC
interactive provers This is particularly relevant for the state reachability type of properties important
in the three-way handshake. The difficulty of proving the simple (no loss or retransmission) case with
CSDs was much less than with the systems based on invariant properties. However, when behavior

46 INTERNET CONCEPTS RESEARCH

becomes more complex, a great deal of human ingenuity is still required to formulate successful
intermediate-level CSDs, many having the form of invariant properties that must be proved by

induction. In this case. the kind of insight needed and the difficulty with all the proof Systems
becomes similar.

The CSD system was developed at USC/Information Sciences Institute and runs on a DEC TOPS-20
system under Interlisp.

5.3.1.5 Conclusions

Two results of our experience with automated verification systems are clear: None of the systems
have all the features desired, and none of them are ready for routine or mechanical application to
real-world protocols. All of the interactive systems lack ability to complete seemingly simple or similar
portions of a proof themselves, while symbolic execution in the CSD system shows promise in this
dimension All of the systems except Gypsy are missing the capability to omit redoing portions of a
proof unaffected by small changes in the specifications or theorems Affirm omits proof by
contradiction, while FDM insists on it. Only Affirm supports induction directly FDM lacks the ability
to introduce lemmas on the fly, as they are needed in the course of a proof.

With the exception of the CSD system, none of the systems are able to handle progress or liveness
properties very well. And despite much effort to provide support. hierarchical verification (e.g., of a

formal service specification rather than lust a set of plausible properties) remains quite difficult for
protocols because of their nondeterministic error-recovery mechanisms. Certainly none of the
systems have integrated the kind of performance or even probabilistic concerns necessary to go
beyond functional correctness of protocols.

If we tried to rank the systems by their ease of use and maturiiy. Affirm would be a clear first, with
Gypsy and FDM in a second category and CSD a distant third.

It should be noted that our experiences and hence our conclusions were colored by our emphasis
on verification of protocol designs (i.e., specifications) rather than code. Affirm is particularly strong
in this area. while Gypsy and FDM are oriented more toward development and proof of operational

code and include features for these purposes that were not fully exercised by our experiments.

Our experience confirms the fact known to verification experts. but not widely appreciated by
others, that the major contribution of automated verification systems is NOT to reduce the amount of
human ingenuity required to accomplish a proof but rather to increase the certainty of correctness If
the user has the ingenuity to formulate the problem in a tractable fashion and the stamina to follow
through all the tedium, the formally verified conclusion does seem to be far more reliably correct than
that of hand proofs. Thus some useful results, albeit at high cost, can be obtained from current
automated verification systems in analyzing features of real-world protocols.

A number of useful improvements identified in the course of this research have already been
incorporated into several of the systems.

We feel that the field as a whole shows sufficient promise that more widespread and routine formal
verification of protocol designs may be feasible within a few years if research into automated
verification continues to be supported. Whether the best features of different systems can be

combined into one more successful system remains a tantalizing question. Again, for more detail on
this work please see [8,22].

SCIENTIFIC PROGRESS 47

5.3.2 Protocol Applications

5.3.2.1 The Multimedia Mail system

This message system model takes the view that a message service can be divided into two activities
message reading and composition. and message delivery. Message reading and composition is an
interactive activity in conjunction with a User Interface Process (UIP) The message delivery activity
may be carried out by background processes called Message Processing Modules (MPMs). Our worK
concentrates on the message delivery aspects and leaves the development of sophisticated user
interfaces to other projects (e.g., Consul and CUE).

The internetwork multimedia message system is concerned with the delivery of messages between
MPMs throughout an interconnected system of networks. It is assumed that many types of UIPs will
be used to compose and display messages delivered by MPM processes. The MPMs exchange
messages by establishing a two-way communication path and sending the messages in a tightly
specified format. The MPMs may also communicate control information by means of commands.

A message is formed by a user interacting with a UIP. The user may utilize several commands to
create various fields of the message and may invoke an editor program to correct or format some or
all of the message. Once the user is satisfied with the message, he "sends" it by placing it in a data
structure shared with the MPM. The MPM takes the data. adds control information to it. and transmits
it. The destination may be a mailbox on the same host. a mailbox on another host in the same
network, or a mailbox in another network.

The MPM calls on a reliable communication procedure to communicate with other MPMs In most
cases, this is a Transport Level protocol such as the TCP. The interface to such a procedure typically
provides calls to open and close connections, and to send and receive data on a connection.

The MPM receives input and produces output through data structures that are produced and
consumed by UIPs or other programs. The MPM transmits the message. including the control
information, in a highly structured format using typed data elements in a machine-oriented yet
machine-independent data language [5.6].

This year. the second version of the MPM for TOPS-20 was completed and tested on systems at ISI,
Bolt Beranek and Newman Inc.. SRI International. and the Massachusetts Institute of Technology
The MPM is now capable of providing regular service

Programs are available to manipulate bit-map images on the PERO personal computer and on
TOPS-20. Translations of image data between bit-map format and either RAPICOM-450 or
CCITT-T.4 facsimile format are possible Images may be entered into the system via the
RAPICOM-450 facsimile machine or may be printed on that machine f'om files stored on the system.

A simple UIP has been completed on the PERO. This system has been used frequently for tests and
demonstrations of the multimedia mail capability within ISI.

Even though this simple UIP is operational, many difficult problems remain A number of separate
programs should be integrated to provide a better user environment. The appropriate interaction
interface for editing multimedia messages has not been studied. The integration of voice into
multimedia messages is quite primitive.

48 INTERNET CONCEPTS RESEARCH

5.3.2.2 The Text Mail system

During this year the ARPANET hosts made the transition from the old host-to-host protocol (NCP)
to the Internet-based Transmission Control Protocol (TCP) [14]. At this same time, the computer mail
system for text mail was changed from the old FTP-based scheme to the new TOP-based Simple Mail
Transfer Protocol (SMTP) procedures.

These SMTP procedures are based on our work last year with a prototype Mail Transport protocol
and the subsequent revision and improvements. This year we finalized the SMTP specification [19]
and provided an initial implementation of the procedures for 'OPS-20.

Our initial SMTP system was used also at BBN and at CalTech. We provided debugging aid to many
of the implementors of SMTP for other systems. We now view our work on the text mail system as
complete, although we will be building interconnections between the multimedia mail system and the
text mail system.

5.3.3 Protocol Design and Concepts

This year we began the design of the Domain Naming system. which provides a hierarchical
subdivision of the name space to allow an administrative subdivision of the task of maintaining the
large and rapidly changing data base.

The Domain system uses structL red names to reference things (hosts. mailboxes) in the Internet.
The resolution of the names to addresses is accomplished by accessing a Domain Server. Some
initial papers on this concept were distributed this year [18] This work will be further developed in
the next year.

Also this year an implementation of a very simple Name Server [1] was completed and put in service
on TOPS-20. The program is written in PASCAL. This year we reissued the specifications for Telnet
(including the Binary, Echo, Suppress-Go-Ahead, Status, and Timing-Mark options)
[48.49.50,51,52.53.54.55] and the "Little Services" (Echo. Discard. Character-Generator. Quote,
Active-Users. Daytime, and Time) [56.57.5859.60.61.62]. We provided TCP-Cased implementations
of the Little Services for our Berkeley-VAX-UNIX systems.

We conducted surveys of the state of implementation of TCP, Telnet, FTP. and SMTP on Internet
hosts [27, 28. 29, 30. 34. 35. 36. 37, 39. 40, 41, 42. 43. 44], and we surveyed the Internet hosts for
implementation of the Little Services [45].

We studied local network communications from the host's point of view and determined that few
protocol systems and interfaces allow the hosts to utilize the network at full speed Typically. delays
in processing prevent a host from sending or (especially) receiving back-to-back packets on the
network. We explored design concepts for a high-speed protocol interface Our resulting design is
called the "filter" interface [33]. We will further explore this design in the next year.

We have continued to support the Internet Working Group through presentations, meetings, and
preparation of meeting notes, agendas, and other routine documents [17,23.24.25,26,38,47] We also
coordinate the monthly report for the DARPA Internet Program.

L ._

IMPACT 49

5.4 IMPACT

5.4.1 Protocol Analysis

The use of more precise specification methods will facilitate cheaper, faster, and more reliable
implementation of the ever-increasing number of communication protocols in DoD computer
networks. The research described here has already had some impact on major protocol development
projects sponsored by the Defense Communications Agency (DCA) and by national and international
standards groups. The previously widespread informal narrative specification methods are being
augmented by more formal specifications. particularly of the state transition or abstract machine
variety.

The development of protocol verification techniques also promises to improve reliability and reduce
debugging time in implementing network systems. Because formal verification allows analysis of
protocol designs prior to actual implementation, problems are detected earlier. Esoteric bugs that
would probably escape detection by ordinary testing and debugging may also be revealed by formal
verification. Several results of this nature have already been discovered and applied to the evolution
of TCP.

This research program has also influenced other research projects, particularly in the area of
program verification, toward developing analysis techniques that are applicable to computer
networks. The results of our work have been widely reported in conferences, journals, and books.
and are often cited by others in the field [31,32].

One conclusion of our work in this area is that the verification tools need more power
Unfortunately, we do not see clear evidence that efforts are being made to improve these tools.

5.4.2 Protocol Applications

Computer mail is the most significant use of the new communication capability provided by
packet-switching networks. Our work to extend the range and capabilities of computer mail will have
important consequences for DoD.

The potential for multimedia communication in a computer-assisted environment is great. The
ability to communicate diagrams or f-aps and to then talk about them will increase the effectiveness
of remote communication tremendously. The combination of text. speech. graphics. and facsimile
into a common framework and data structure may have substantial imv-act on other applications as
well.

The power of a communication system is directly related to the umber of potential communicants
For computer mail, this means that the power of a system is related to the number of people who have
access to that system. To have access to a computer mail system requires the use of compatible
components: terminals, programs, and protocols. Our work on protocols and programs will increase
the power of computer mail by enlarging the set of compatible components.

50 INTERNFT CONCEPTS RESEARCH

5.4.3 Protocol Design and Concepts

The selection of the IP and TCP protocols by DoD as the basis for a DoD internetwork protocol
standard shows the impact of the work of the DARPA community on DoD communication systems,
The development of the Defense Data Network (DDN) by the DCA will be a malor use of these
protocols in an operational military system. This influence is demonstrated further by the mounting
requests for information about IP/TCP from companies interested in producirg commercial products
or bidding on government contracts.

Through our participation in discussiuns at the Internet Working Group meetings and in technical
meetings with other contractors, we have successfully influenced the development of many protocols
and protocol features. Our publication in conferences and journals extends the impact of this work to
others who design similar systems [21,46].

5.5 FUTURE WORK

We will work in seven task areas: Intelligent Communication, Hierarchical Naming System,
Multimedia Mail, High-speed Interfaces, Design Issues Studies, Surveys and Measurements, and
Protocol Specifications.

1. Intefligent Communication. We will study a representative sample of existing local
interprocess communication mechanisms, develop a draft Internet IPC Protocol, work
with other DARPA contractors to refine this draft, and specify a final Internet IPC
Protocol. We will create a demonstration implementation of the IPC protocol. We will
specify a standard for work order and negotiation formats. We will identify (in
cooperation with DARPA) a distributed application and implement it.

2. Hierarchical Naming System. We will further develop the Internet Domain Naming
Concept and supporting protocols. We will create demonstration implementations of the
server and the resolver functions. The resolver and the server will communicate via the
Internet.

3. Multimedia Mail. We will continue to operate the prototype MPM and develop a simple
user mail interface program. We will explore the integration of our simple user interface
with the advanced user interfaces produced by the CUE and Consul projects. We will
experiment with various styles of preparation of multimedia messages, including various
editing techniques and granularity of media elements in the composite messages.

4. high-speecf Interfaces We will develop the design of the high-speed filter
communication interface We will conduct software experiments to guide the design
decisions. We will build a prototype interface. We will explore the replication of the
interface based on a reimpleme tation in VLSI.

5. Design Issues Studies. We will study and prepare reports on Internet protocol design
issues, as described in the previous section.

6. Surveys and Measurements. We will conduct surveys of Internet protocol implementation
features and conduct some performance measurements. We will report the results to the
DARPA Internet community.

7. Protocol Specifications. We wili produce up-to-date documents of the protocols used in
the DARPA community on an as-needed basis, and we will manage the assignment of
protocol parameters to network experimenters as needed.

FUTURE WORK 51

REFERENCES

1. Postel. J., "Internet Name Server," USC/Information Sciences Institute, IEN 116, August
1979.

2. Crocker, S., State Deltas: A Formalism for Representing Segments of Computation, Ph.D
thesis, University of California, Los Angeles, 1977. Also appears as USC/Information
Sciences Institute, RR-77-61, September 1977.

3. Good, D., et al., Report on the Language Gypsy, University of Texas at Austin, Technical
Report ISCMA-CMP-10, September 1978.

4. Locasso, R., et al.. The Ina Jo Specification Language Reference Manual. System
Development Corporation, Technical Manual TM-(L)-6021 /001/00, June 1980

5. Postel, J., "Internet Message Protocol." USC/Information Sciences Institute, RFC 759.
August 1980.

6. Postel, J., "A Structured Format for Transmission of Multimedia Documents,"
USC/Information Sciences Institute, RFC 767, August 1980.

7. Gerhart, S., "An Overview of Affirm: A Specification and Verification System,"
Information Processing 80: Proceedings of the IFIP Congress, Melbourne, Australia,

October 1980.

8. Sunshine, C., et al., "Specificatior and Verification of Communication Protocol in Affirm
using State Transition Models," IEEE Transactions on Software Engineering, SE-8. (9),
September 1982. Also appears as USC/Information Sciences Institute, RR-81-88, March
1981.

9. Sunshine, C., Formal Modeling of Communication Protocols, USC/Information Sciences
Institute, RR-81-89, March 1981.

10. Schwabe, D., "Formal Specification and Verification of a Connection-Establishment
Protocol," Proceedings of the Seventh Data Communications Symposium, Mexico City,
October 1981. Also appears as USC/Information Sciences Institute, RR-81-91, April
1981.

11. Overman, W., Verification of Concurrent Systems: Function and Timing, Ph.D. thesis.
University of California, Los Angeles, 1981.

12. Postel, J., "Transmission Control Protocol," USC/Information Sciences Institute, RFC
793, September 1981.

13. Good, D. and B. DiVito, "Using the Gypsy Methodology," University of Texas at Austin,
Draft Report, October 1981.

14. Postel, J., "NCP/TCP Transition Plan," USC/Information Sciences Institute, RFC 801,
November 1981.

52 INTERNET CONCEPTS RESEARCH

15. Overman, W.. and S. Crocker, "Verification of Concurrent Systems: Function and
Timing," in Proceedings of the Second International Workshop on Protocol Specfcation.
Testirg. and Verification, Idyllwild, California. North-Holland. May 1982

16 Sunshine, C.. "Experience with Four Automated Verification Systems.' in Proceeoings of
the Second International Workshop on Protocol Specification. Testing. and Verfication.
Idyllwild. California, North-Holland, May 1982.

17. Sunshine. C., "Routing for Stub Gateways." USC/Information Sciences Institute. June
1982.

18. Su. Z.. and J. Postel, "The Domain Naming Convention for Internet User Applications."
Network Information Center. SRI International. RFC 819, August 1982.

19. Postel. J.. "Simple Mail Transport Protocol," USC/Information Sciences Institute. RFC
821. August 1982.

20. Sunshine C.. "Protocol Specification and Verification Work at USC/ISI Summary
Report." USC/Information Sciences Institute. IEN 211, August 1982.

21. Postel, J.. C. Sunshine. and D. Cohen. "Recent Developments in the DARPA Internet
Program." Pathways to the Information Society, Proceedings of the Sixth International
Conference on Computer Communication, ICCC. London, September 1982.

22. Sunshine. C.. and D. Smallberg, Automated Protocol Verification, USC/Information
Sciences Institute, RR-83-1 10, October 1982,

23. Postel, J., "Request for Comments on Requests for Comments." USC/Information
Sciences Institute. RFC 825, November 1982.

24. Postel, J.. "The Remote Telnet User Telnet Service," USC/Information Sciences Institute,
RFC 818, November 1982.

25. Postel, J., and J. Vernon, "Requests for Comments Summary - Notes 600-699."
USC/Information Sciences Institute, RFC 699, November 1982.

26. Postel, J.. and J. Vernon, "Requests for Comments Summary - Notes 700-799."
USC/Information Sciences Institute, RFC 800. November 1982.

27. Smallberg, D., "Who Talks TCP? - Survey of 7-Dec-82." USC/Information Sciences
Institute, RFC 832, December 1982.

28. Smallberg, D., "Who Talks TCP? - Survey of 14-Dec-82." USC/Information Sciences
Institute. RFC 833, December 1982.

29. Smallberg, D., "Who Talks TCP? - Survey of 22-Dec-82," USC/Information Sciences
Institute, RFC 834, December 1982.

30. Smallberg, D., "Who Talks TCP? - Survey of 28-Dec-82," USC/Information Sciences
Institute, RFC 835, December 1982.

FUTURE WORK 53

31. Sunshine, C.. ed., Proceedings of the Second International Workshop on Protocol
Specification Testing and Verification, North-Holland, 1982.

32. Sunshine, C., "Guest Editorial: Protocol Specification, Testing, and Verification,"
Computer Networks, 6, (6), December 1982.

33. Mockapetris, P., Communication Environments for Local Networks, USC/Information
Sciences Institute, RR-82-103, December 1982

34. Smallberg, D., "Who Talks TCP? - Survey of 4-Jan-83," USC/Information Sciences
Institute, RFC 836, January 1983.

35. Smallberg, D., "Who Talks TCP? - Survey of 11-Jan-83," USC/Information Sciences
Institute, RFC 837, January 1983.

36. Smallberg, D., "Who Talks TCP? - Survey of 18-Jan-83," USC/Information Sciences
Institute, RFC 838, January 1983.

37. Smallberg, D., "Who Talks TCP? - Survey of 25-Jan-83," USC/Information Sciences
Institute, RFC 839, January 1983.

38. Postel, J. "Assigned Numbers," USC/Information Sciences Institute, RFC 820, January
1983.

39. Smallberg, D., "Who Talks TCP? - Survey of 1-Feb-83," USC/Information Sciences
Institute, RFC 842, February 1983.

40. Smallberg, D.. "Who Talks TCP? - Survey of &-Feb-83," USC/Information Sciences
Institute, RFC 843, February 1983.

41. Clements, R., "Who Talks ICMP, Too? - Survey of 18 February 1983," USC/Information
Sciences Institute, RFC 844, February 1983.

42. Smallberg, D., "Who Talks TCP? - Survey of 15-Feb-83," USC/Information Sciences
Institute, RFC 845, February 1983.

43. Smallberg, D., "Who Talks TCP? - Survey of 22-Feb-83." USC/Information Sciences
Institute, RFC 846, February 1983.

44. Westine, A., "Summary of Smallberg Surveys - February 1983." USC/Information
Sciences Institute, RFC 847.

45. Smallberg, D., "Who Provides the Little TCP Services?" USC/Information Sciences
Institute, RFC 848, March 1983.

46. Cohen, D., and J. Postel, "Gateways, Bridges, and Tunnels in Computer Mail," Local Net
83, Online Conferences, London, March 1983.

47. Postel, J., "Official Protocols," USC/Information Sciences Institute, RFC 840, April 1983.

54 INTERNET CONCEPTS RESEARCH

48. Postel. J., and J. Reynolds, "Telnet Protocol Specification," USC/Information Sciences
Institute, RFC 854, May 1983.

49. Postel, J., and J. Reynolds, "Telnet Option Specifications," USC/Information Sciences
Institute, RFC 855, May 1983.

50. Postel, J., and J. Reynolds, "Telnet Binary Transmission," USC/Information Sciences
Institute, RFC 856, May 1983.

51. Postel, J., and J. Reynolds, "Telnet Echo Option." USC/Information Scienices Institute,
RFC 857. May 1983.

52. Postel, J.. and J. Reynolds, "Telnet Suppress Go Ahead Option," USC/Information

Sciences Institute, RFC 858, May 1983.

53. Postel, J., and J. Reynolds, "Telnet Status Option." USC/Information Sciences Institute,
RFC 859, May 1983.

54. Postel, J.. and J. Reynolds. "Telnet Timing Mark Option," USC/Information Sciences

Institute, RFC 860. May 1983.

55. Postel, J., and J. Reynolds, "Telnet Extended Options - List Option," USC/Information
Sciences Institute, RFC 861, May 1983.

56. Postel. J., "Echo Protocol," USC/Information Sciences Institute, RFC 862. May 1983.

57. Postel, J., "Discard Protocol," USC/Information Sciences Institute, RFC 863, May 1983.

58. Postel. J., "Character Generator Protocol," USC/Information Sciences Institute. RFC

864, May 1983.

59. Postel, J., "Quote of the Day Protocol," USC/Information Sciences Institute. RFC 865.
May 1983.

60. Postel, J., "Active Users." USC/Information Sciences Institute, RFC 866. May 1983.

61. Postel, J., "Daytime Protocol." USC/Information Sciences Institute, RFC 867. May 1983.

62. Postel, J., and K. Harrenstien, "Time Protocol." USC/Information Sciences Institute, RFC

868, May 1983.

55

6. COMMAND GRAPHICS

Research Staff: Consultant: Support Staff:
Richard Bisbey II Danny Cohen Lisa Holt
Benjamin Britt
Pamela Finkel
Dennis Hollingworth

6.1 PROBLEM BEING SOLVED

A major issue for the military is improved utilization of available data to enhance the Command and
Control decision-making process. The military, like its private sector counterpart. currently finds
itself in the midst of an information explosion. More computers and computer-controlled systems are
being acquired, generating information in ever-increasing quantity and detail. For this information to
be useful in decision making, it is necessary that computers take more active roles in storing.
retrieving, analyzing, integrating, and presenting data.

The man-machine interface is a critical link when computers are used to aid the decision maker.
Information "nust be presented to the decision maker in ways that enhance and facilitate the decision
process. Two-dimensional graphics can play an important role in improving this interface. Where
spatial relationships exist, plotting the information on a graph, bar, or pie chart or positioning the
information on a map can aid in the rapid assimilation of the information by the decision maker. Such
two-dimensional displays can even disclose perspectives (e.g., a trend on a graph or a clustering of
forces on a map) that would not be readily apparent from a table or list of numbers. Finally,
two-dimensional displays provide a natural medium for integrating and fusing information.

6.2 GOALS AND APPROACH

To address the above needs, 1SI designed a graphics system based on the premise of distributing
the processing load across hosts in a computer network [2]. The architecture defines a graphics
system as a series of isolatable functions that are pairwise connected by any available
intraprocess/interprocessor communications mechanism. Information is communicated between
functions using a uniform protocol. The architecture supports a wide variety of configurations
ranging from clustering all functions on a single host to distributing each to a different host.

ISI has also developed a set of generic graphics primitives (Graphics Language [3]) by which
pictures can be described and interacted with at the application level. The graphics primitives are
transformed by the Graphics System at program execution into specific operations and display modes
appropriate to the display device to which the system is connected.

6.3 SCIENTIFIC PROGRESS

A major effort during this period has been the reimplementation of the Graphics System for the UNIX
operating system. The Graphics System was originally designed for and used in DARPA's Advanced
Command and Control Architectural Testbed (ACCAT). The computing architecture used in ACCAT
consisted of a network of PDP-!0s connected to PDP-11s. The PDP-10s were used for large

56 COMMAND GRAPHICS

computations and distributed database storage, while the PDP-1is were used as Remote Site
Modules (RSMs) for secure terminal/network access to the PDP-10s and for attaching special display
hardware The Graphics System was written for and run on the PDP-lOs, initially under the TENEX
operating system and subsequently under TOPS--20

The Graphics System is nov, being adapted for use in DARPAs Strategic 03 Program Here the

computing architecture consists of a network of ''AXes running the UNIX operating system. This
adaptation required reimplementing the Graphics System in the "C' programming language and
interfacing it to the UNIX operating system

Functionall. the UNIX implementation of the Graphics System is identical to the TOPS-20
implementation The same overall design found in the TOPS-20 implementation has been retained in

the UNIX implementation. The system is distributable, i.e., portions of the system can be run on
separate hosts, and is based on a logical "data channel" over which messages are passed to
cooperating processes. Distributability makes it possible to run half of the Graphics System on a
PDP-10 running TOPS-20. and the other half of the system on a VAX running UNIX.

The UNIX implementation of the Graphics System Backend (i.e., that portion of the Graphics System

responsible for external Graphics Files. internal segment/pseudo-display files, and device order

generation) was completed during this period. Two different device types are supported in this initial
implementation, the Tektronix 4010/12/14 series monochrome displays and the Advanced Electronic
Design 512 color bitmap display. The Backend code underwent extensive testing using the previously
mentioned distributed processing capability of the system. Test applications and the Graphics
System Frontend were run on a TOPS-20 host while the Backend was run on a VAX Major portions
of the Graphics System Frontend were also implemented in "C" during this period. The UNIX
conversion tasks remaining are the completion of the Frontend implementation and testing and
integration of the Frontend with the Backend.

During the reporting period, fundamental changes took place in the ARPANET in both the protocols
and the devices used. These changes severely impacted the Graphics System. In January 1983 the

underlying protocol used on the ARPANET was changed from the Network Control Protocol (NCP) to
the Internet Protocol/Transmission Control Protocol (IP/TCP). Since the Graphics System and all the
graphics applications had been written using NCP, all the network communications routines had to be
reimplemented. This process was further complicated by the fat that major sections of the IP/TCP

system code used by the Graphics System for communicating both graphic protocol and display
device orders had never been tested. Thus, the conversion process was not limited to the conversion
and testing of Graphics System code, but also included the testing and debugging of IP/TCP system

code

At the same time the NCP-to-IP/TCP conversion was taking place, hardware on the ARPANET was
also being replaced. In particular, TIPs were being replaced with TACs. Unfortunately, the TACs
were missing several important fundamental capabilities, including the ability to send and receive
8-bit binary data and the ability to allocate individual terminal lines A considerable amount of time
was expended diagnosing these problems and getting responsible people to make corrections, first

for NCP, and then for IP/TCP. Problems remain with the TAC that prevent its use with 8-bit binary

data. and ISI has continued to interact with TAC programmers to fix the remaining problems.

Two papers were written [1, 4], with the latter presented at the NATO-sponsored conference on
Interoperability of ADP Systems held in The Hague, Netherlands. During the conference, several
graphics demonstrations were given using the Graphics System in a multinetwork environment.
Figure 6-1 shows the network topology used for the demonstrations,

SCIENTIFIC PROGRESS 57

SATNET

A NTERNET
Commandl
GraphMc B

i I ". a
ARPANET

-/

Graph Lc Br Lef In g

ISI to Etem
to Intelsat 4A

to Goonh LIly

to UCL

to RSRE

to SHAPE

5 netwiorks
1 satel I lte

Figure 6-1: Network topology used for Graphics System demonstrations

58 COMMAND GRAPHICS

6.4 IMPACT

The prmcpaW impact of this work will be felt in military environments where command mobility is
paramount and a portable, network-based graphics capability is necessary for information to
facilitate command decisions This work will make the Graphics System available in the HERT
(Headquarters Emergency Relocation Team) and other mobile environments,

The UNIX-based Graphics System will provide the fundamental network graphics capability for the
Strategic C3 Experiment. Graphics applications can be run on a single VAX host or distributed
between multiple VAX hosts. Graphic applications can also utilize PDP-10 computing resources,
either distributed or nondistributed. Finally, the UNIX/"C" implementation of the Graphics System
will form the basis for a Motorola MC68000 microprocessor version, permitting a highly portable
graphics capability.

6.5 FUTURE WORK

Three basic components are needed if graphics is to play a role in military decision making. First,
there must be a graphics system, a program that converts basic graphics primitives (e.g., lines, text,
filled solids) into the order codes for a particular display device. Second, there must be high-level
tools in the form of intelligent, domain-independent display agents that, given a collection of data.
produce a graphics representation of that data. Third, there must be high-level applications and
decision aids that perform the semantic binding between the user's data and the high-level graphics
representations provided by the display agents.

Having already produced a network-distributable graphics system, ISI will focus its efforts in the
area of domain-independent display agents. In particular, ISI will design and build a Geographic
Display Agent. This "intelligent" agent will automate cartographer functions of drawing and
annotating geographic-based displays. It will assume total responsibility for the production of the
display. including generation of background maps and generation, placement, and symbol collision
resolution of user annotations. The initial use of this agent will be for the production of geographic
displays for the C3 Experiment Bomber Recovery Application.

REFERENCES

1. Bisbey, R., II, D. Hollingworth, and B. Britt, "A network graphics system for command and
control," in Proceedings of the Symposium on Interoperability of Automated Data Systems,
North American Treaty Organization, The Hague, Netherlands, 1982.

2. Bisbey, R., II, and D. Hollingworth, A Distributable, Display-Device Independent Vector Graphics
System for Command and Control, USC/Information Sciences Institute, RR-80-87, 1980.

3. Bisbey, R., II, D. Hollingworth, and B. Britt, Graphics Language, USC/Information Sciences
Institute, TM-80-18, 1980.

4. Hollingworth, D., C2 Graphics Editor User's Manual, USC/Information Sciences Institute,
TM-83-24, 1983.

59

7. WIDEBAND COMMUNICATIONS

Research Staff: Support Staff:
Stephen Casner Victor Brown
E. Randolph Cole Lisa Holt
Ian Merritt Jeff LaCoss

Jerry Wills

7.1 INTRODUCTION

The Wideband Communications (WBC) project at ISI is one of several groups involved in the joint
DARPA/DCA Wideband Packet Satellite Program. The objective of the Wideband Program is to
explore the technical and economic feasibility of packet voice on a large scale, and to begin
investigations of other media. such as packet video.

ISI's role is to conduct experiments using the Wideband Network as it becomes available for
regular, active use. ISI has been closely involved in efforts to make the network as reliable and useful
as possible, and has established a schedule of regular tests and experiments in an effort to
encourage real use of the network, thus gaining as much practical experience as possible.

7.2 PROBLEM BEING SOLVED

As the military is asked to do more and more with less manpower, communications becomes
increasingly important. Reaction times must be fast, and many different kinds of data must be
transmitted, correlated, and analyzed. This is very difficult, even impossible, to achieve when
different networks are used for voice, data, facsimile, video, and other media. It is difficult enough to
provide voice communications-let alone data and other media-in a tactical environment.

The DARPA Network Secure Communication (NSC) program took one of the first steps toward
integrated military communications when it provided voice communication along with data on a
packet-switched network. The NSC program showed very convincingly that packet voice was
feasible. Moreover, a study by the Network Analysis Corporation [4] showed that a single packet
network for both voice and data could support the DoD's communications needs much more
efficiently than conventional alternatives.

However, the data rate of the network used (the ARPANET) was not high enough to support a
meaningful volume of voice traffic. In addition, the cost of a packet voice terminal (speech coder and
decoder and network interface) was prohibitively high.

Advances in VLSI have now made it possible to build a packet voice terminal, about the size of a
normal telephone, for a few thousand dollars However, a packet network with a high enough data
rate to support reasonable volumes of voice traffic was still needed.

The DARPA/DCA Wideband Packet Satellite Network was built in 1980 to provide a high-rate
packet network for experiments with multiple packet voice streams and other high-rate data. The
Wideband Network provides a raw data rate of about 3 Mb/s, which is sufficient for a thousand or
more voice channels when a narrowband speech compression technique such as LPC is used.

60 WIDEBAND COMMUNICATIONS

The Wideband Network is currently being actively used for packet voice experiments. Since the

packet voice terminals used have not yet been produced in large numbers, much of the load is
generated by traffic simulators at various points in the network. The ISI WBC project has expended
considerable effort in developing an interface which provides voice access to the Wideband Network
from ordinary telephones. in order to promote everyday use of the network and gain realistic user

experience as early as possible

Since the Wideband Network can transmit data at a rate more than fifty times that of the ARPANET,
it will allow experiments with other media, such as packetized compressed video, which require

inherently high data rates. Since video signals share many of the characteristics of voice signals, i.e.,
a "bursty" nature and a high degree of redundancy. the ISI WBC project is conducting experiments to
demonstrate the utility of packet video in the same way that the NSC program demonstrated the utility
of packet voice. Thus the Wideband Network will serve as a research testbed for pacKet video, just as
the ARPANET served as the original research testbed for packet voice.

The Wideband Network will help further extend the concepts of integrated networking to much

higher data rates, while maintaining all the advantages of security and survivability which are inherent

in packet switching. In addition. the Wideband Network is powerful enough to connect together
high-bandwidth local area networks (LANs) for the first time.

Compared to existing terrestrial packet networks, satellite-based networks such as the Wideband
Network have some disadvantages: longer delay and a higher bit error rate. However. satellite-based
networks have a much higher typical data rate and an inherent broadcast nature. Communications

systems using the Wideband Network will be designed to take advantage of its strong points and to
compensate as much as possible for its weaknesses. Much of the research task will lie in designing
the communications systems to fit the characteristics of the network.

7.3 GOALS AND APPROACH

The initial goal of the DARPA/DCA Wideband Program is to test and validate the feasibility of packet
voice on a large scale. Later. attention will be focused in other directions, including experiments with

high-rate transmission of more conventional non-real-time data and the application of
packet-switching techniques to media such as packet video for the first time.

The overall approach of the ISI WBC project is twofold: to expedite the transition of mature
technology, such as packet voice, from the laboratory into the everyday working environment and to

apply the unique capabilities of the Wideband Network to new areas, such as packet video and
high-rate data transmission. This approach requires a broad spectrum of efforts, including

development of hardware, software, and protocols. Development of research technology into
practical systems requires a combination of highly reliable hardware and robust, easy-to-use

software. Development in new areas such as packet video requires powerful new hardware which is

flexible and programmable, along with development and testing of new software and protocols.

The ISl WBC project has been working in four specific areas:

1. distribution, support, and improvement of the Switched Telephone Network (STN)
interface, a device designed to greatly expand the availability of packet voice and
encourage its regular use;

2. design and implementation of hardware and software for packet video experiments,
including offline software simulations of the algorithms to be implemented;

GOALS AND APPROACH 61

3. installation of hardware at a second site (the MIT Lincoln Laboratory), which will
participate with ISI in packet video experiments;

4. enhancement of Wideband Network reliability by working to solve system and
interference problems and by improving the physical installation of the ISI earth station
hardware.

Useful experience with any new technology is the result of its exposure to a large number of
potential users. Even though the cost and size of packet voice terminals have decreased greatly, as
demonstrated by the Lincoln Laboratory PVT, existing terminals are still too large and expensive to
supply to large communities of users who may use them only occasionally. To expand the availability
of packet voice and gain the experience of a wider user community, the ISI WBC project designed and
built the STN interface [1] and distributed it to other Wideband sites.

The ISI WBC project is working to answer the question: "Is video as well suited to the
packet-switched network environment as voice?" Video signals, like voice, are "bursty," i.e., the
picture can change rapidly from one scene to the next and then stay fairly constant for some time.
Current digital video transmission systems are designed to work with fixed-capacity networks, and
they use the full channel capacity whether or not it is required. Packet-switched systems. on the
other hand, are designed to carry bursty traffic, taking advantage of the fact that, given a large
number of sources of traffic, the overall network load stays fairly constant.

The goal of the packet video experiments is to build a video transmission system which is optimized
for a packet environment. This goal permits-even dictates-the design of a system which can detect
change, or the lack of change, from frame to frame in the video input. Other characteristics of packet
networks, such as selectable priority on a per-packet basis, can be used to allow the network to
discard less important video information while making sure the most important video information
always gets through.

It should be possible to build a system capable of transmitting color television-type video with
moderate motion at a data rate of 1.5 megabits per second. Along the way, monochrome video and
perhaps slower frame rates will be used.

Our approach has been to survey the literature and technology of video bandwidth compression
and select the best overall compression technique, and then to develop a hardware/software system
that is as programmable and flexible as possible in order to support a variety of experiments.

Programmability will make the ISI system unique. Although commercial video bandwidth
compression systems are available, they are not programmable in any way, and they cannot be
customized to take advantage of the Wideband packet satellite channel.

In order to provide a realistic, useful test of the ISI packet video system, an identical set of hardware
for packet video experiments is being assembled at Lincoln Laboratory, and video transmissions
across the Wideband Network will begin as soon as software work is completed. Initial transmissions
will consist of uncompressed frames of video, transmitted as often as the network allows.

Experiments with compressed video will begin as soon as the necessary hardware and software are
available.

62 WIDEBAND COMMUNICATIONS

7.4 SCIENTIFIC PROGRESS

7.4.1 STNI-Switched Telephone Network Interface

In order to increase the availability of the Wideband Network for potential voice users, ISI has
designed the Switched Telephone Network (STN) interface [1]. The STN interface sits between a
telephone line and a Wideband Network voice terminal (the Lincoln Laboratory PVT), and receives
commands from either DTMF (Touch Tone) signals from the user's telephone or digitally. from the
PVT. The S'", interface is based on a Z80 microprocessor, and consists of a single 7-inch by 7-inch
circuit board which plugs directly into the Lincoln Laboratory PVT (or it can be used stand-alone).

To handle an incoming call. the STN interface first answers the ring and sends the caller a second
dial tone. The user then commands the interface with a serieR of key presses (called a dialing
sequence), and the interface uses that information to make a Wideband Network voice connection.
either to a normal PVT or to a PVT which contains another STN interface.

To generate an outgoing ca'l, the user first makes a Wideband Network voice connection to a
remote PVT with an STN interface. Connection information is passed over the Wideband NetworK to
the remote PVT, which instructs its STN interface to pick up the line and place a call.

STN interfaces are now permanently installed at ISI, Lincoln Laboratory. and SRI International.
Permanent installation of the STN interfaces at Lincoln Laboratory was delayed until February 1983,
due to the installation of a new PBX there. Since that time, however, ISI WBC project members have
used the STN interfaces and the Wideband voice network for calls to the Lincoln Laboratory area
whenever possible.

The people at SRI International have modified their STN interfaces to serve as the standard audio
input/output device with their Packet Radio Network terminals, in addition to the normal STN
interface functions. A number of improvements have been made to the "TN interface software,
including

" serial vocoder protocol support for use in LPC or other low-rate voice transmissions:
" a timeout to disconnect a hung-up connection that did not return to dial tone;
" special handling to accommodate the timing requirements of the ISI PBX;
" enhanred interaction between the STN interface's silence detection and its

echo-suppression logic to eliminate occasional superfluous packets.

In addition, a number of enhancements have been made to the PVT software which deals with the
STN interface, including

" better integration of the ISI dialing module into the PVT software;
" a timer to return to dial tone after a long period in which no digits were received from the

user;
" new translations to allow dialing to area codes adjacent to 213, including 619 (San Diego

area), 714 (Orange County), 805 (Ventura County), and 818 (San Fernando Valley area,
as of January 1984);

* improved status feedback for users during conferences.

A pesky problem with echoes results when any device is connected to the switched telephone
network. Echoes are not apparent when there is little or no delay in the audio path or when the

" im ro
e

sttu
fe

db
c fo

us
r du

in
co

fr
n e

...

..

...

....
..

.

SCIENTIFIC PROGRESS 63

communication is half duplex (one direction at a time). However, the Wideband packet voice network
is full duplex, and the satellite link introduces a relatively long delay (230 milliseconds)

The current version of the STN interface uses a technique called echo supression, which basically
forces the voice conversation to be half duplex, i.e., one party cannot speak while the other party is
speaking. A device called an echo canceller can eliminate the echo problem, but these devices have
been relatively large and expensive. Newly introduced microprocesors capable of real-time signal
processing can be programmed to do echo cancellation, and future plans include integrating a
single-chip echo canceller into the STN interface.

7.4.2 Channel Improvements

As is the case with any research and development tool, the amount of progress on Wideband
Network applications depends largely on the availability of the Wideband Network itself. To ensure
maximum availability, two kinds of effort are needed. a sustained effort to keep all the components of
the system aligned, calibrated, and working prcperly, and an occasional concerted effort to
implement a new feature or function.

In the past year, the ISI WBC project has

" participated in a special task force of Wideband Program contractors established to
address and solve reliability problems:

" worked with Probe Systems, Inc., to isolate and cure a significant RF interference
problem:

" worked with Western Union to relocate the ISI earth station hardware from a non-ideal
outdoor enclosure to an inside rack (which greatly improved reliability), and to refocus
the ISl earth station antenna to increase its gain and thereby decrease the channel's bit
error rate.

7.4.2.1 The Wideband Program Task Force

The Wideband Task Force was established in March 1983. with a participant from each of the
primary Wideband Program contractors. The job of the Task Force was to focus a large amount of
effort and attention on a number of then-existing problems.

The method chosen by the Task Force was to identify the problem areas, assemble the key people
required to investigate and fix the problem at a single site, and let them work on the problem for a
week, or as long as it took to identify and solve the problem. Generally, more than one problem was
targeted. and all the problems were isolated and either repaired on the spot or the equipment
returned to its source for repair.

The Task Force met at Lincoln Laboratory in April. and at ISI in May and June 1983. WeeKly reports
were circulated by Lincoln Laboratory to all Task Force members The Task Force has accomplished
the following:

" Numerous system problems have been resolved through the intensive on-site testing and
debugging.

" The following channel improvements have been made:

-antennas at ISI and Lincoln Laboratory have been refocused, with 1 dB
improvement at both sites;

64 WIDEBAND COMMUNICATIONS

-an improved low noise amplifier (LNA) has been tested at Lincoln Laboratory and
found to result in a 1 dB improvement;

-the Earth Station Interface (ESI) now has improved burst aggregation and
hardware error checking;

- the ISI Packet Satellite IMP (PSAT) has had numerous software bugs removed and
is capable of reliable two-site operation at 1.544 Mb/s.

7.4.2.2 Channel interference location

Since the Wideband Network became operational at ISI. an intermittent but severe interference

problem had existed. Initially, the interference was sufficient to crash the network software in the
PSAT In time. software safeguards were installed The interference no longer crashed the system

but it was still quite bothersome. The interference occured several times per hour primarily during

the daytime. and lasted up to five seconds. ISI WBC project personnel observed and reco-ded

numerous instances in which images transr itted over the Wideband Network were partially or

completely obscured by noise patterns.

A number of experiments were conducted to assure as much as possible that the interference was

not internally generated in the ISI network hardware or software. When nothing was found in the ISI

system. a contract was issued to Probe Systems. Inc.. to try to locate, identify. and solve the
interference problem The Probe Systems investigators rapidy confirmed that the source of

interference was indeed external, and that each instance of the interference appeared as a series o

strong. periodic pulses in the intermediate frequency (IF) stage of the lSI hardware The source of the
interference was not. however. in the 3 7 to 4 2 GHz frequency band used by the ISI receiving

equipment.

The source of the interference was found to be radio altimeters on aircraft flying over the Los

Angeles International Airport at about 20.000 feet The ISI earth station antenna a 5 meter parabolic

dish, is aimed to the southeast, directly over the airport. Like all satellite antennas, it is very sensitive

to signals within a very narrow beam angle (1.1 degrees). Even though the radio altimeters transmit in

another frequency band (an adjacent band at 4 2 to 4 4 GHz). the radio altimeter signals arE so strong

because of their proximity that harmonic mixing creates signals within the IF frequency of the ISI
receiver The aircraft took approximately 5 seconds to traverse the antennas beam. hence the

5-second duration of the interference.

The radio altimeters were operating legally, and the interference was due solely to severe

overloading within the ISI earth station hardware Similar interference has occasionally been noted at

other Wideband sites, some of which are also near airports.

As a temporary solution, the ISI WBC project installed a tunable bandpass filter (borrowed from

COMSAT) before the ISI downconverter, allowing signals in the satellite band to pass through

undisturbed while rejecting signals in the radio altimeter band. 1SI built a monitoring device and

confirmed that the interference was eliminated. Several bandpass filters are currently being

evaluated and the best one will be selected and installed at all Wideband sites.

7.4.2.3 Earth station relocation

The Wideband Network earth station at ISI. which consists of the satellite transmitting and receiving

equipment. was originally installed in an outdoor enclosure at the base of the ISI antenna The earth

station needs to be located as close as possible to the antenna itself in order to avoid signal loss in

SCIENTIFIC PROGRESS 65

the cables and waveguides that connect the equipment and the antenna. The enclosure was a
fiberglass-covered, insulated wooden structure about the size of a small refrigerator, with a built-in
air conditioner.

After the initial installation, other equipment was added to the earth station and the transmitting
amplifier was replaced twice with a larger, more powerful model. Keeping the equipment at the
proper temperature became more and more difficult, and thermal sensors often shut the equipment
down, taking ISI off the air. In addition, the moist, salt-laden ocean air was stdrting to corrode the
equipment.

It was apparent that the situation was resulting in excessive downtime for ISI and an excessive need
for maintenance and attention from the local Western Union staff. Two alternatives were examined,
either installing the equipment in a larger, better controlled shelter at the base of the antenna, or
moving it into the ISI computing facility, which had since been expanded into the area on the floor
immediately under the antenna. The second alternative was chosen, and ISI made the necessary
construction arrangements and provided space in the ISI computing facility. In March 1983, Western
Union moved the equipment inside. The flexible waveguide and standard coaxial cables connecting
the earth station to the antenna were replaced with solid waveguide and "Heliax" cable to avoid
additional signal losses caused by the longer signal paths. The equipment has been much more
reliable in its new location, and the result has been increased Wideband Network availability at ISI.

7.4.2.4 Antenna refocusing

It had been suspected for some time that the 5 meter parabolic dish antenna on the roof at ISI. as
wel as the antennas at the three other original Wideband Network sites, was not performing up to
specifications because of insufficient manufacturing quality control. Tests run with the antenna at
Lincoln Laboratory indicated that the antenna was indeed not up to specifications. Although the
manufacturer was willing to replace the antennas at no cost, the replacements would have required
expensive modifications to the antenna support structures at the sites.

A simple compromise was chosen: to fine-tune each antenna by changing the position of the
secondary reflector to compensate for the slightly non-parabolic shape of the antenna. The antenna
adjustment (about an inch), made at ISI in June, resulted in an increase of 1 dB in both transmit and
receive gain. Transmitter output power was decreased by 1 dB, to maintain constant amplitude at the
satellite. A significant improvement in the bit error rate was noted.

7.4.3 Packet Video

The objective of the packet video work at ISI is to determine if there is a good match between the
needs of a video transmission system and the capabilities of packet-switched networks, as was the
case with voice. The Wideband Network is the first packet-switched network which can support such
an experiment.

Digital transmission of video signals is nothing new. Neither are bandwidth compression systems
which can reduce the data rate of a color video signal with moderate motion from the normal 100
Mb/s to 1.5 Mb/s or even less. However, such systems are designed to work with fixed-rate
channels, are hard-wired to perform only one set of functions, and are very expensive.

66 WIDEBANO OOMMUNICATIONS

The packet video experiments are based on the following facts and observations:

" The required data rate for video communication is the product of the spatial (x and y),
shade and color (z), and temporal (t) resolutions used.

" The scene being transmitted will remain fairly constant, except for occasional sudden
changes as the camera is zoomed, panned, or switched.

" The system must cope with sudden changes in channel performance (data rate, BER,
delay, etc.).

" Both the video encoding and decoding equipment will have significant storage and
processing ability.

Therefore, the packet video system must

" be as flexible and programmable as possible to handle new situations and to exploit as
yet unknown opportunities

" detect motion, or the lack of motion, and transmit as much or as little data as necessary;
" degrade gradually and gracefully, rather than suddenly and drastically, in response to

decreasing channel capacity or increasing channel error rate.

These and related issues in satellite video communications are discussed in much greater detail in
[5].

The ISI Wideband Communications project is engaged in designing and building a programmable
system for packet video communications. Figure 7-1 is a block diagram of the ISI system. The
hardware is based on a commercial video I/O/frame buffer system built by IKONAS (a subsidiary of
Adage. Inc.), chosen because of its modular structure, which is based on a wide, fast, backplane bus.
The ISI-built hardware consists of the Video Engine, a two-card set which performs the block
transform processing in real time, and a high-speed serial interface for input and output of coded
image data.

The following steps have been accomplished to date:

" A literature study was conducted and a candidate family of algorithms (block transform
coding using the Discrete Cosine Transform, or DCT) was chosen.

" IKONAS raster graphics systems were acquired and installed at ISI and Lincoln
Laboratory to provide the foundation on which to build the programmable video
bandwidth compression hardware.

" The Packet Video Protocol (PVP) was designed and published [3].
" Software simulation of the hardware and the initial algorithms is almost complete.
" The hardware design is nearly complete.

7.4.3.1 The Video Engine

The key feature of equipment for packet video experimentation must be programmability. Flexible,
programmable hardware minimizes the number of unalterable decisions which have to be made and
which may later prevent the system from taking advantage of new opportunities. In addition, a
programmable system allows a relatively simple system to be built fairly quickly, with advanced
features added later. Unfortunately, none of the commercially available hardware for real-time video
processing is programmable.

Therefore, the ISI WBC project chose to use a commercial system (the IKONAS system) to handle
video input and output and frame buffering, and to design and build additional hardware to do the
real-time video bandwidth compression and high-speed serial I/O tasks. The additional ISI-built
hardware is called the Video Engine.

SCIENTIFIC PROGRESS 67

HDLC

-------------------------------~IKONAS
•IKONAS DISPLAY

Bus SYSTEM

I)T-SLICE

PROCESSOR

i MEMORIES

VIDEO

A MOST EOVIDEO
INTERFACE IOUTPUT I

I.---------- ------------- -------- ----- I

COMPUTER E3UR'

Figure 7.1: Block diagram of real-time video system

The Video Engine is a single-instruction, multiple-data machine based on 8 Texas Instruments TMS
320 microprocessors. The TMS 320 is a 16-bit signal-processing-oriented microprocessor which

executes one instruction every 200 nanoseconds. with a full 16x16 multiplier, a 32-bit accumulator.
and a small (144-word) internal RAM. Thus the Video Engine operates at a rate of 40 MIPS.

The Video Engine is designed to be installed in the IKONAS/ADAGE RDS-3000 raster graphics
system. The IKONAS system provides video input, frame buffering, and video output, and contains a
high-speed 32-bit bus, which the Video Engine will use for its source and destination of video data.
More than one Video Engine can be put on a single IKONAS system, but their computational
throughput will ultimately be limited by the data rate.

The primary design goal of the Video Engine was to achieve maximum programmability and
flexibility at a reasonable cost. The conventional architectures for abundant processing power for
video applications are based either on bit-slice microprocessors or on dedicated, special-purpose
logic.

Since the Video Engine has to be programmable, a dedicated, special-purpose (i.e., inflexible)
processor was not considered. Bit-slice microprocessors can be used to achieve considerable
computing power at a fairly reasonable cost, but they are somewhat difficult to program and can
achieve at best about 5 to 10 MIPS per processor if flexibility is to be retained.

68 WIDEBAND COMMUNICATIONS

Microprocessors designed for signal processing. such as the TMS 320 and the NEC 7720 are farrl)

new. The cost per unit is fairly high. currently about S1 50, but it can be expected to decrease rapidl,
The 320 and the 7720 are easier to program than a bit-slice microprocessor though harder than an

ordinary micro Their architecture is fairly primitive compared to that of a conventional micro but
they are more than an order of magnitude faster.

Since algorithms for video and other real-time signal processing are general's, paallel in nature a
parallel architecture with many identical processors is a good fit to the tasK. in additior, Such an,

architecture is much more suitable for eventual VLSI implementation. For these reasons we chose

the multi-microprocessor architecture.

We chose the TMS 320 over the NEC 7720. because it can operate from a fair!, iarge (41': externa
program RAM. compared to the 512-word internal ROM or EPROM used b the 7720 It is slighti,

faster than the 7720 for transform-oriented programs.

Figure 7-2 is a block diagram of the Video Engine which has two main components

1. a RAM-based sequencer to control data flow and supervise the operation of the 320s

2. the eight 320s themselves, along with an external buffer memory and an external table
memory for each. and a single external program memory.

The sequencer uses a 4K by 40-bit RAM for control, and operates with a 1OOns cycle time In addition
to controlling the 320s, the sequencer is responsible for reading and writing pixel data via the IKONAS
bus. The 40-bit sequencer microcode word is horizontal. i.e.. the bits in the word directly control the
hardware and the fields are not decoded. A single-level subroutine capability is provied.

The Video Engine is designed tc operate on blocks of data. typically 8 by S. 8 b,)E or 16 b a. 16 by
16. etc. A typical application would allocate a different block to each of the eight 320s BlocKs can be
overlapped, but the IKONAS is structured to read groups of 8 pixels in a rov, most efficiently, and
therefore blocks always start on 8-pixel boundaries horizontally. No such limitation exists vertically.

The sequencer addresses a pixel by taking a frame start address, adding a bloc , offset to it. and

adding a pixel offset to the result. The block and pixel offsets are fairly large, so a blocK could
consist. for example, of every nth group of 8 pixels horizontally and/or every mth pixel vertically. The
block offset is larger than a frame, allowing for even more flexibility

Each 320 has a buffer RAM of 4K 16-bit words associated with it The buffer RAM smooths out the

bursty nature of the processing, allowing the 320s to run at full speed, and augments the small RAM in
the 320s. Buffer RAM contents are transferred to and from the bul frame memory, under control of
the sequencer. and transferred to and from the 320s via their I/O ports Each 320 also has a table
RAM (4K S-bit words) which can be used for storage of coding and decoding tables etc. This allows
each 320 to code and decode different data. even though all the 320s are executing the exact

program code simultaneously.

Only one of the 320s has a program memory associated with it. the other seven 320s are
synchronized to that one. A simple memory mapping mechanism allows the use of 16K words of
program memory, compared to the normal 4K word maximum. This mechanism allows code for

several algorithms to reside in memory at once. perhaps allowing the use of different algorithms for
different channel error rates, etc.

SCIENTIFIC PROGRESS 69

I K0N A S BU S

gU

SEQUENCER I SSSEQUIENCER &CONTROL ADDRESS GENERATORMEMORY [D9)

UJI-

EMEMORYOR

Figure 7-2: Block diagram of Video Engine

70 WIDEBAND COMMUNICATIONS

The Video Engine consists of a set of two cards, with the sequencer on one card and the 320s and
their associated memories on the other. Power consumption is in the 100-watt range, but the
IKONAS is able to supply adequate power and cooling. Logic is Schottky and low-power Sc' ottky.
The memories are 4K by 4 high-speed (55ns) static RAMS.

To help in hardware and software testing. all of the memories in the Video Engine can be loaded
and read from the IKONAS bus. The IKONAS system is installed on a PDP 11/45, and the 11/45 or
other host is responsibile for loading and starting the IKONAS/Video Engine.

7.4.3.2 Hardware and algorithm simulation

To support the packet video effort, it is necessary to simulate (1) the video bandwidth compression
algorithms and (2) the video processing hardware. In the past year, the two simulation programs have
been integrated, thus producing an accurate simulation of the complete video processing system.
The resulting simulation package, called DCTSIM, pays particular attention to the simulation of
interfaces between the components of the system.

Simulation of the video bandwidth compression currently implements the initial algorithm to be used
in the real-time system, and transforms and encodes blocks of 8 by 8 pixels. The resulting
compressed image has between one and two bits per pixel. When images coded to two bits per pixel
are decoded and inverse transformed, the resulting image is virtually identical to the original. Coding
to one bit per pixel causes noticable degradations in the reconstituted image. with quality increasing
with the number of bits per pixel. The algorithm is currently being "tuned" to achieve a compression
to somewhere between one and two bits per pixel without noticable degradation.

The ISI WBC project is currently extending the simulation to blocks of different sizes, such as 8 by
16, 16 by 8, and 16 by 16 pixels. Larger blocks should allow greater compression with the same
output quality as the 8 by 8 pixel blocks. In the near future, more sophisticated coding schemes will
be implemented and evaluated on the simulator before they are put into the real-time system.

The other function of DCTSIM is to test and develop the sequencer portion of the video processing
hardware. The simulator is functionally equivalent to the hardware, and the code that drives the
simulator is exactly the same as that which will drive the real-time hardware. The simulator has
already proved very useful in assessing the functionality of the real-time hardware and pointing out
errors and omissions in the design.

7.4.3.3 Hardware additions

Earlier this year, a second IKONAS/ADAGE video system was purchased and installed at Lincoln
Laboratory in preparation for building a duplicate real-time system there. As soon as the real-time
hardware is debugged and running at ISI, a second set of boards will be built and installed in the
machine at Lincoln Laboratory. Even before the real-time system is running. frame-at-a-time video
will be exchanged between ISI and Lincoln Laboratory to test and debug the video protocol and the
supporting software.

Both IKONAS systems have been equipped with a bit-slice processor (BPS). which is a high-speed
microprogrammed machine designed to handle internal processing chores for an IKONAS system.
Although the BPSs are too slow to perform the block transform function, they will provide additional
processing power for control of the entire real-time system. and they will supervise the input and
output of coded image data.

IMPACT 71

7.5 IMPACT

DARPA-sponsored work continues to havt a major impact in the packet voice area. Most

high-speed local area networks (LANs) have incorporated packet voice, although most use it to store
voice messages rather than for interactive communication.

The Wideband Network is a jointly sponsored effort of DARPA and DCA. In addition to the original

DCA Wideband Network site at DCEC. three additional sites (Fort Monmouth. New Jersey. Fort
Huachuca, Arizona. and the Rome Air Development Center in Rome. New York) have been

established and are undergoing tests. The new sites will be an important mechanism for transfer of

packet voice technology to the services, Personnel from one of the new sites have consulted with ISI
WBC project members about providing video capability at some of the new sites. The ISI Packet
Video Protocol (PVP) [3] could be used to support such an effort.

An architecture like that of the Video Engine should be well suited to any processing task that can
take advantage of parallelism but does not require a large amount of code, Signal processing

applications in general fall into this category.

The TMS 320. in particular, has had a big impact on the market, ano improved versions of the 320 by
Texas Instruments and similar chips by other manufacturers are certain to follow. The Video Engine

is perhaps the first processor that attempts to use this type of chip in a highly parallel form. Such an

architecture is likely to have a significant impact in the future.

7.6 FUTURE WORK

7.6.1 Packet Voice Experiments

Experiments wth packet voice on the Wideband Network will continue into the foreseeable future.
with new features and capabilities added. tested and put into everyday use. ISI will continue to

participate in the further development of Wideband packet voice, and will also continue to participate

in efforts such the Task Force to upgrade the overall reliability and utility of the network itself.

To increase the quality and utility of ',le STN interfaces, echo cancellers will be built an.' : trofitted

to the STN interfaces.

7.6.2 Packet Video

The immediate goal of the packet video effort is to get the initial real-time implementation up and
running Since the approach of the packet video effort is to start with a ba.ic capability and steadily

refine it. future packet video work will consist of increasing the performance of the video system by
finding and exploiting ways to use the unique characteristics of the Wideband Network. In parallel
with these experiments, the packet video system will be extended to handle color.

In addition to the ISI-developed real-time video system described in this report, the ISI WBC project

will perform experiments with another video system which has been developed for DARPA. This

system is a novel teleconferencing system which operates at 19.2 Kb/s and'produces binary images
resembling sketches of the conference participants [2]. A conference participant sits facing a bank of

several camera/monitor units, one for each of the other participants in the conference. Each of the

72 WIDEBAND COMMUNICATIONS

monitors displays a sketchlike head-and-shoulders view of one of the other conference participants,
The corresponding camera "sees" a view of the local participant from that monitor, preserving the
spatial sense of the conference.

Integration of the 19.2 Kb/s system into the Wideband Network should be fairly simple, since the
software in general, and the Packet Video Protocol in particular, is designed to be flexible. Current
plan,; call for installation of this system at the MIT Laboratory for Computer Science and the DARPA
office in Arlington, Virginia.

REFERENCES

1. WBC Project, "Wideband Communications." in 1982 Annual Technical Report. USC/Information
Sciences Institute. SR-83-23, 1982.

2. Brody, H.. "Reach out and see someone," High Technology, August 1983, 53-59.

3. Cole, E. R., PVP - A Packet Video Protocol. USC.Information Sciences Institute, W-Note 28.
August 1981.

4. Gitman, I., and H. Frank, "Economic analysis of integrated voice and data networks: A case
study," Proceedings of the IEEE 66, (11). November 1978, 1549-1570.

5. Casner, S L., D. Cohen, and E. R. Cole, "Issues in satellite packet video communication," in
Conference Record of the IEEE International Conference on Communications, IEEE, Boston,
1983. Also available as USC/Information Sciences Institute, RS-83-5.

73

8. VLSI

Research Staff: Support Staff:
George Lewicki Victor Brown

Danny Cohen Victoria Svoboda
Vance Tyree Jasmin Witthoft
Joel Goldberg Lee Magnone
Ron Ayres
Barden Smith
Yehuda Afek
David Booth

8.1 PROBLEM BEING SOLVED

The VLSI design communities of DARPA and NSF require fabrication capabilities in order to
investigate the design methodologies and architectures appropriate to VLSI where gate-count will
exceed one million gates per device. Recognizing this need, DARPA established the MOSIS (MOS
Implementation Service) system at ISI in January 1981. MOSIS has met its design objectives

" reduced the cost of VLSI prototyping;
" shortened turnaround time for VLSI prototyping;
" freed designers from fabrication idiosyncrasies: and
• made design less dependent on specific fabrication lines.

A cost reduction of one to two orders of magnitude has been achieved by spreading the fabrication
cost over many projects. By centralizing (and computerizing) the idiosyncratic knowledge about all
vendors, MOSIS eliminates the need for designers to familiarize themselves with many details
Serving as the only interface between its design community and the vendor base. MOSIS is able to
provide turnaround times of four to six weeks for standard technology runs, except when unusua
fabrication problems occur. Nonstandard technologies and experimental runs generally require
longer fabrication schedules.

8.2 GOALS AND APPROACH

MOSIS involves various aspects of multiproject wafer assembly, quality control, and interaction with
industry, as shown in Figure 8-1.

The major components of the MOSIS system are

" interaction with the designers;
, handling of their design (CIF) files;
• communication over either the ARPANET or TeleMail:

" placement of projects on dies, and dies on wafers;

* matching of MOSIS design rules to specific vendors' design rules, addition of alignment
marks, critical dimensions. and test devices;

" fabrication of E-beam mask sets (via subcontract);
* fabrication of wafer lots (via subcontract); _

como orj

74 VLSI

User

.Manag em en~t

" Geometry

, Fabrication '

[Wafer Probing I

Functional Screening

Packaging

Distribution
i['User

~Fiqu re8.1 : General flow of the MOSIS system

GOALS AND APPROACH 75

" wafer probing and data analysis;

" generation of bonding maps;
" wafer sawing, die packaging, and bonding (via subcontract);

* device distribution.

Designers use any available design tools to create artwork files that are sent to MOSIS via the
ARPANET or other computer networks. MOSIS compiles a multiproject wafer an% contracts with the

semiconductor industry for mask making, water fabrication, and packaging. MOSIS then delivers
packaged IC devices to the user. The user perceives MOSIS as a black box that accepts artwork files
electronically and responds with packaged IC devices, as shown in Figure 8-2.

Though MOSIS may be instrumental in providing cells and design tools to the user, it is the sole
responsibility of the user to see that the submitted patterns yield working designs. One may compare
MOSIS to a publisher of conference proceedings compiled from papers submitted in "camera-ready"

form, where the publisher's responsibility is to produce the exact image on the right kind of paper
using the appropriate ink and binding-but not to address the spelling, grammar, syntax, ideas. or
concepts of the various papers.

MOSIS provides a clean separation of responsibility for the "printing" of chips. The semiconductor
manufacturer is responsible for the processing of the parts and must satisfy MOSIS's rigorous quality
control. MOSIS is responsible to the user for the quality and timeliness of the fabrication. The user is
responsible for the proper design of the parts and may use any design methods he finds appropriate
for his needs.

It is quite common that very advanced and sophisticated chips fabricated by MOSIS work on
"first-silicon." An example of this is Caltech's MOSAIC-this is an amazing accomplishment of the
existing design tools. Unfortunately, this is done at a considerable cost; for example. it is estimated
that Caltech's MOSAIC chip consumed over 1,000 CPU hours on various VAXes before it was
submitted to MOSIS for fabrication.

8.3 SCIENTIFIC PROGRESS

8.3.1 Technology Base for Fabrication Runs

nMOS$

MOSIS routinely supports nMOS at 3.0 and 4.0 micron feature sizes, with buried, rather than butting,

contacts, in accordance with the Mead-Conway design rules. At least 20 vendors can fabricate
devices according to these nMOS design rules.

CMOS/Bulk

MOSIS supports CMOS/Bulk (typically P-well) with 5.0, 4.0, and 3.0 micron feature sizes, usually
with a capacitor layer and occasionally with a second metal layer. Most vendors support the MOSIS

design rules for CMOS/Bulk, which were developed primarily by the Jet Propulsion Laboratory.
However, not all of the vendors can support them at the 3.0 micron level.

76 1W 5 5VLSI

Figure 8-2: Interaction-user to MOSIS to user

SCIENTIFIC PROGRESS 77

CMOS/SOS

MOSIS supports CMOS/SOS fabrication with 4.0 micron feature size in accordance with the
Caltech design rules. All of the SOS vendors support these design rules.

Comoleted Fabrication Runs

The following is a categoric breakdown by technology of the fabrication runs completed during this
reporting period:

20 runs nMOS, 4 microns
3 runs nMOS, 3 microns
7 runs CMOS/Bulk, 5 microns
4 runs CMOS/Bulk, 3 microns

2 runs CMOS/SOS

8.3.2 Computing Interface

Since its inception, MOSIS has used KL-2060s (running TOPS-20) not only to communicate with
users on the network, but also for its considerable computing requirements. It has been determined
that VAX 11/750s would provide a more efficient and economical environment for computing.
Substantial progress has been made in porting the MOSIS geometry software to the VAX 11/750.

MOSIS is on the verge of generating MEBES files on the VAX 11/750. In recent pilot tests, the
MEBES files generated vn a VAX 11/750 were identical to those generated on a KL-2060. Computing
on VAX 11/750s has several benefits over KL-2060s:

" maintainability;

" extensibility;
* economy;
* single usage eliminates the burdens of shared resources;
* software implement,. tion is more exposed.

The transition to VAX 11/750s will be transparent to MOSIS users; they will continue to access
MOSIS on KL-2060s. The VAX 11/750 will be used primarily for geometry crunching. preparing
MEBES files, and writing MEBES tapes.

The MOSIS software provides for placement and routing of parts of VLSI designs into fully
operational, single, unified designs. Tentative measurements indicate that the software runs only a
factor of two slower on a VAX 11/750 than on a KL-2060, significantly less than the projected factor
of four.

8.3.3 Fabrication Interface

The MOSIS vendor base has expanded substantially during the reporting period. Increased user
feedback and more extensive test results have allowed the MOSIS project to determine and
communicate fabrication requirements to new vendors. This has resulted in higher quality wafers and
the development of consistently reliable vendor sources for mask making and nMOS fabrication.

78 VLSI

MOSIS has instituted procedures to manage the vast amount of information inherent in dealing with
a multi-vendor base. Many administrative tasks have been automated, including the maintenance of
templates to determine fabrication requirements specific to vendor and technology (a single vendor
often provides several fabrication technologies).

Three micron CMOS/Butk presents many complications that do not exist in nMOS: fabrication
requirements vary considerably from vendor to vendor. We have been largely successful in
standardizing the design rules for the users by deriving nonstandard designs from user-supplied
designs, as in the case of extra layers The availability of such fabrication options varies widely. For
instance, a vendor may offer combinations of desirable options such as capacitors via an electrode
layer and a second metal layer (capacitors, second metal, either but not both, or both). We anticipate
that the standard 3 micron CMOS/Bulk technology will offer a choice of options, but not both. The
availability of these options, coupled with increased volume and a diverse vendor base, necessitates
continued automation of the fabrication interface.

The quality of parts fabricated in the CMOS/Bulk technology equals that of parts fabricated in
nMOS. Further, CMOS/Bulk is a more desirable technology because of its capability for lower power
consumption and higher circuit density. Therefore, MOSIS is preparing for the eventual shift away
from nMOS by improving turnaround and vendor reliability for CMOS/Bulk fabrication.

8.3.4 Quality Assurance/Design Interface

Most MOSIS devices are prototypes without established functional testing procedures. Generally,
the designers who receive these devices are still debugging the designs, rather than checking for
fabrication defects introduced by less-than-perfect yield.

MOSIS's extensive quality assurance program is aimed primarily at the parametric level. This
guarantees that the electrical properties of the wafers are within specifications established by the
best a priori simulations used in the design process. Work has continued to increase the accuracy of
the SPICE parameters which are made available to MOSIS users. SPICE provides simulated
mathematical modes for behavior of transistors, allowing designeis to assess a small digital circuit
idea, to avoid faulty design, and to improve their chances of success in fabrication. The electrical
criteria are a superset of the SPICE parameters at level I1. They include a ring oscillator, which gives a
rough idea of the speed of the resulting circuitry. The electrical properties of the wafers are extracted
first by the fabricator, who uses either his own process control monitoring devices or the MOSIS test
structures. Only wafers passing these tests are delivered to MOSIS.

It is a common practice in the IC industry to save functional probing time by probing wafers in only a
very few sites. This practice makes sense, because all parts are subject to functional testing and
because this parametric probing serves only ti eliminate disastrously bad wafers.

Since designers hand-test most MOSIS devices, MOSIS requirements for parametric testing are
higher than industry standards MOSIS inserts its own test strip on every device, if space permits
When the test strips cannot be inserted, MOSIS probes a large number of test sites This probing
provides important statistics on the electrical properties and their distribution across the wafer. Most
wafers have uniform distribution; some. however, have other statistical patterns, such as significant
gradients and bimodal distributions.

SCIENTIFIC PROGRESS 79

These in-depth statistics are available only to the fabricators Designers receive the general
statistics (mean and variance) for each run. Interested users can request the specific values of the
parameters extracted near any of their chips.

Users comparing the performance of actual chips to their simulations find it useful to rerun the
simulation with the actual a posteriori parameter values extracted near that chip. The marking on
each chip (which can be checked by opening the package lid and using a low power microscope)
identifies the run in which the chip was produced and its position on the wafer. Along with the wafer
ID marked on the package, these markings provide the identification needed to determine the most
relevant probing site.

A perfect set of electrical parameters does not guarantee perfect yield, so there is always a need for
functional testing. MOSIS does not have the facilities for high-speed functional testing, but can
perform partial functional testing. This screening typically catches the majority of fabrication defects,
such as shorts. The screening is performed by applying and reading user-provided vectors to each
device before the wafer is cut those failing the test will not be packaged. By screening the larger
chips-which typically have lower yield and higher packaging cost, and are required in larger
nuantities-MOSIS significantly reduces the packaging cost.

8.3.5 Standard Pad Frame/Packaging

MOSIS's current packaging strategy is to package enough parts to ensure a 90 percent probability
of delivering a defectless part to the designer. This strategy was acceptable when most of MOSIS's
community was designing small circuits and the fraction of packaged defective parts was small.
However, a significant portion of the community has successfully completed the development of large
designs and now wants from 300 to 3.000 working parts to begin developing prototype systems based
on parts obtained through MOSIS. The yield for these large designs is expected to be 25 percent at
best If MOSIS were to follow its current strategy of packaging parts without any testing to indicate
functionality, it would be packaging four times the required number of parts to achieve a requested
quantity. This becomes a serious problem as quantities increase. Packaging costs dictate a more
economical approach.

To avoid such waste, MOSIS has worked with Stanford University to define a functional test
language (SIEVE) and is developing hardware to effect the testing specified by that language Users
will soon have the option of submitting text describing limited test procedures to be used at wafer
probe to screen out bad parts. The purpose of this screening is to detect the types of "trivial" defects
that cause the majority of bad parts and, therefore, to reduce packaging costs Full functional testing
is expected to be done by the user.

For designs with custom pad layouts, it will be the responsibility of the designer to provide MOSIS
with the custom probe card to probe his circuits To eliminate the inconveniences associated with
generating custom probe cards for every design. MOSIS is currently developing a set of standard pad
frames, each specifying exactly where the pads are positiored, MOSIS will then stock probe cards for
each of the frames

These standard frames are also expected to facilitate packaging Bonding diagrams for projects
currently submitted are generated manually because several attempts to automate this process have
met will only limited success Bonding diagrams instruct the packager to connect a specific pad on
the chip to a specific pin on the package Standard pad frames will have standard bonding diagrams,
eliminating the the need to generate a new diagram for each project

80 VLSI

Standard frames also allow the bonding process itself to be automated. Automated, programmabie
bonding machines are currently available. Standard pad frames make possible a scenario in which
an operator would identify a first pad and package pin; programmed information would then control
the bonding on a chip.

Au'omating the packaging phase could significantly improve MOSIS's turnaround time. The best
times experienced by MOSIS for various parts of a run in nMOS are (1) four days to convert submitted
geometry into a format acceptable by a mask maker and to generate the first masks required by a
fabricator to start a run; (2) five days for wafer fabrication; (3) one day for wafer acceptance; (4) one
week for packaging; and (5) one day for overnight delivery of packages. Standard pad frames with
automated bonding could reduce packaging time to two or three days and reduce the time from
submission of designs to mailing of packaged parts (in very conventional technologies) to
approximately two weeks.

8.4 IMPACT

MOSIS's main function is to act as a single interface ("silicon broker") between a geographically
distributed design community and a diverse semiconductor industry. As such an interface. MOSIS
has significantly reduced the cost and time associated with prototyping custom chips.

The greatest impact of MOSIS, however, is in the community it has created. The MOSIS user
community shares not only the fabrication services, but also experience, cells, tools, and software.
The rapid growth of the community proves that the services provided by MOSIS are useful and
important to both the academic and the R&D communities.

8.5 FUTURE WORK

8.5.1 Printed Circuit Boards

MOSIS will soon offer the fabrication of Printed Circuit Boards (PCBs) to its users MOSIS will treat
PCBs as just another technology, surprisingly similar to nMOS and the various dialects of CMOS.
Although PCBs and lCs are made of different materials, they share a common method of specification
of the images required on each of their layers. Both are fabricated by a "photographic" process
which transfers images to the media surface from a master tooling.

This approach of using common tooling preparation methodology for both lCs and PCBs has many
advantages: it allows designers to use common tools for the design process (with details tailored
specificalli to each technology) and allows MOSIS to apply the same management procedures and
the same geometrical processing and tooling preparation methods to PCB technology.

Probably the most important feature of the expansion of MOSIS to include PCBs is that the
expansion will be done in a way which is expected to carry over to other packaging technologies,
such as various hybrids, ceramic carriers, and plastic tapes.

FUTURE WORK 81

8.5.2 CMOS/Bulk

CMOS/Bulk is the emerging VLSI technology. MOSIS has adopted the philosophy that 3 micron
CMOS/Bulk is going to be the work horse of the design community for the next ten years. Only in
special cases will designers opt for a finer feature size, expected to be 1.2 microns. MOSIS plans to
rapidly expand its vendor base for 3 micron CMOS/Bulk based upon a set of design rules already in
hand.

MOSIS is also taking steps to position its design community to exploit the 1.2 micron CMOS/Bulk
technology that is being developed at several commercial and industrial laboratories. Towards this
goal, MOSIS will be supporting a number of investigators in their development of rules and design
techniques for 1.2 micron CMOS/Bulk, with wafer fabrication carried out by four vendors. The idea is
to develop these rules and techniques in parallel with the development of the technology, allowing the
entire MOSIS community to use this technology upon the completion of its development. This
strategy will narrow the gap between the availability of a new technology and the ability to use it.

83

9. OFFICE ENVIRONMENTS

Research Staff:

Don Chadwick
Steve Brown
Tom Capalety

John Diniakos
Brian Donnelly
Bernice Glenn

9.1 PROBLEM BEING SOLVED

As the man-machine relationship becomes an integral part of our lives, and the computer an
extension of our minds, our environment must facilitate the use of hardware while offering a human
dimension. The Office Environments project developed a plan for a workspace which offers physical
ease and comfort, and allows for a high degree of performance.

Current research in related areas was analyzed to help identify major issues and to avoid
duplication. Combining research, design development, construction, and testing, we produced a
scaled prototype of an electronic office based on an existing ISI office area.

9.2 GOALS AND APPROACH

Several premises for the design of an electronic office were outlined. Issues concerning
information management, job satisfaction, and productivity were studied to determine their relation to
the physical environment:

" Electronic technology should enhance. not threaten, the worker's ability to make
significant, creative, timely decisions and judgments.

" The introduction of new technologies which provide the workers with opportunities to be
more autonomous and creative does not imply the need for designing isolated office
environments, but instead environments which encourage human interaction.

" The measure of productivity in the office can no longer be attained through the
quantitative industrial method of comparing input to output A radically different
measurement (' productivity will imply substantial changes in the lob design and
function.

" The concept of a worker's participation in his environment is extremely significant any
successful design plan must reflect the inputs of the worker.

The research and development of the physical environment focused on the following areas

Furniture (seating, etc.);

* Work surfaces (desk, CRT);
* Storage needs;
• Lighting control;
° Temperature control;
* Privacy and noise control;
* Safety (wire management);

S BLANK

84 OFFICE ENVIRONMENTS

" Vision-related problems (glare);
" Range of computer capabilities;
" Capablity and functionality of all office elements: and
" Space needs for office interaction;

9.3 SCIENTIFIC PROGRESS

9.3.1 The Workspaces

Figure 9-1 is a plan view of the current ISI 1 lth floor office layout. The shaded area in the southeast
corner is the 1600-square-foot area represented in the scale model. Presently, this area
accommodates seven people, each in a conventional private office.

1N..

Figure 9-1: Current ISI floorplan with area represented by scale model

We examined the individual design of each workspace within the context of the total office
environment We began by eliminating all existing interior walls, planning the layout of the wall
system to house the workspaces. We created eight individual workspaces and a social/conference
area. We worked to create an environment which maximizes comfort, efficiency, and productivity.

All persons interviewed agreed on the necessity of control over their work areas on many levels,
particularly audio and visual privacy. Thus, in contrast to the "open plan" and component wall
system (typically low dividers and thin partitions), we proposed four-inch-thick walls, solid doors, and
frosted and clear glass windows, all used in recognizable architectural scale.

SCIENTIFIC PROGRESS 85

9.3.2 Wire Management

In Figures 9-2 and 9-3, a three-channel communications and power cable raceway is visible along
the wall and under the workstation top. This "power track" houses lines for data, communications,
and electrical power along th-E ceiling, walls, or floor, distributing them to an individual work area.
There is access to the track at any point. In addition, the power track acts as a horizontal support
element of the work surface. The communications and power cables enter the workstation either at a
full floor-to-ceiling column (Figure 9-3) or from the floor into a worktop-height column (Figure 9.2).

Figure 9-: Power track access to worktop-height column

The column arrangement selected depends on the type of communications and electrical system
employed in the office building and the needs and desires of the specific user. These columns also
support various storage units and articulated arms, which in turn support keyboards and visual
display units,

9.3.3 Physical Storage

Based on our research, the majority of paper information tends to be pending work. Most existing
offices negate this notion by providing minimal display and a large amount of hidden storage
(drawers, file cabinets). Yet office workers are acquiring more paper with no adequate way of
accommodating it. Our plan offered various display spaces on worktops.

86 OFFICE ENVIRONMENTS

Figure 9-3: Power track access to full column

9.3.4 User Control

The development of the electronic office sets the stage for the emergence of a new breed of worker
who has new freedoms, responsibilites. and needs. User control of lighting (both direction and
intensity), air ventilation and temperature. and sound are provided in the overhead unit attached to
the column, The controls are accessible from a seated position (Figures 9-3 and 9-4).

Articulated arms that support keyboards and visual display units are flexible over a given
three-dimensional area. Muscular-skeletal fatigue and visual fatigue. caused by improper positioning
and screen glare. are eliminated by a combination of adjustable lighting and arms.

Figure 9-4 also depicts the use of frosted and clear glass in certain areas of the interior walls.
creating a private office that is connected to the larger environment.

The work area in Figure 9.5 opens to the social/conference area. which is the hub of the office
environment. Also evident is the worktop-height column that comes through to the surface, allowing
easy access for telephones or other devices requiring cord connections.

SCIENTIFIC PROGRESS 87

Figure 9-4: Use of clear and frosted glass in creating interior walls

Figure 9-5: Work area with access to social/conference area

88 OFFICE ENVIRONMENTS

Figu re 9- 6: Social/conference area

Figure 9-7: Project leader's office

SCIENTIFIC PROGRESS 89

Figu re 9-8: Shared office workstation configuration

9.3.5 Quality Human Interaction

Our research pointed convincingly to the notion that people prefer to work in an office setting rather
than at home. There is a desire to be involved in an active and stimulating environment. The
social/conference area (Figure 9-6) satisfies some very important needs of the electronic office
worker, It is a casual area that anticipates informal meetings. the tables accommodate keyboards and
visual display units and can display images and text on the larger wall screen.

Figure 9-7 is an office for a project leader, who has frequent meetings and work sessions with
others. This work area provides true team interaction, incorporating teleconferencing equipment and
a large display screen on the wall. We also designed a sharec office workstation configuration
(Figure 9-8) for those who find it advantageous to work in a shared space (prolect support, part-time
researchers, graduate students).

9.4 IMPACT

Design of a complete office environment encompasses a complexity of interrelated issues
Research has resulted in recommended design dimensions for specifics such as keyboard height,
visual display viewing distance, screen viewing angles, and work surface height These specifications
were researched during the first phase of the project and were incorporated in the second phase
proposal.

The second phase proposal of this project. calling for full-scale construction of this plan, was not
funded. Therefore, the impact of our design on an actual workspace is unknown

91

10. KNOWLEDGE DELIVERY

Research Staff: Support Staff:
William Mann Joyce Reynolds
Christian Matthiessen
Sandra Thompsun
Michael Fehling
Michael Halliday

10.1 PROBLEM BEING SOLVED

The usefulness of computers is often limited by their very poor ability to communicate with people.
Computer users-and potential users-are often prevented from using information because that
information is in an obscure, computer-internal notation. Training and experience can only partially
overcome the problem. People who must interact with many computers, who need rapid
understanding of changing situations, or who have only occasional needs for computer information.
tend to be blocked by the computer notations.

Many of these limits could be removed by a general technique for expressing computer information
in English. English itself is widely understood, relatively domain independent, and very flexible

Unfortunately, the available text generation technology is not general. reliable, or easy to apply. It is
restricted mainly to very domain-specific. preplanned operations. The technology does not
generalize well, does not combine sentences well, and does not transfer from one task to another at
all.

A new technology of text generation is needed, one in which techniques can be refined and moved
from one application system to another. Task-specific knowledge and techniques must be made
separable from general techniques of English, with provisions for embedding the general portion in a
variety of different application systems.

The problem is currently particularly critical in two areas:

1 Current systems can employ appropriately only a tiny fraction of the full expressive power
of English sentences. Stronger capacity to control English grammar is needed,

There is a complexity limit on what can be expressed in computer-generated text. It is set
by the difficulty of understanding intricate single sentences and by the inability of systems
to combine sentences well. Computational methods for planning multiple coordinated
sentences are needed

10.2 GOALS AND APPROACH

A recent survey of text generation technology concluded that four critical technologies will pace
development of text generation capabilities in this decade [1]

1. Grammars of English
2. Models of Discourse
3. Knowledge Representation
4. Models of the Reader

92 KNOWLEDGE DELIVERY

Of these, the first two are most critical in the near term They have a producer-consumer
relationship: models of discourse are crucial to creating text plans, and grammars are crucial to
executing text plans. Among past text generation systems, the ones producing the most fluent
English have been those with large. linguistically justi~ted grammars.

We have selected the Systemic Linguistics tradition as our basis for development of theory and
programs.' Of the many linguistic frameworks available today. the systemic framework is used in the
largest fraction of work in text generation-more than all others taken together For text generation it
has the advantage of a strong orientation toward language function-what the language ooes for its
user-and it contains functional accounts of a diverse spectrum of English syntactic constructions

As represented in the linguistic and computational literatures at the beginning of this project. the
systemic framework had several problems:

1. The notation, especially for realization (structure-building), was variable and somewhat
informal.

2. Notational problems peculiar to actually creating large-scale grammars had not been
addressed.

3. There was no semantic notation.
4. Although grammatical alternatives were well represented. the issue of when to use which

alternative was not well addressed.

As part of our work on linguistically justified grammars we have addressed all of these problems,
and we have complete solutions to all but the last one

Regarding the problem of creating a computationaly useful model of discourse, there were several
sources of difficulty:

1. The literature from linguistics and related disciplines was (and is) vague and rudimentary.
2. The literature is oriented much more to narratives and stories than to the kinds of

expository content for which text generation is needed most.
3. The available theories of text structure are oriented to describing existing text, not to

saying how text is created.

Our approach to the discourse structure problem has been to discover and characterize the
structure of expository texts, and then to augment the characterizations of text structure to include
methods for using the structures in text creation Of course. the approaches to discourse and
grammar must be compatible: In addition to sketching the intended text structure, the discourse
planner must produce the details the grammar needs.

The final phase of development is to apply the grammar, the text planner, and their associated
domain-dependent processes to actual text generation problems Such applications will test and
refine all of the parts, including the domain-independent ones.

1 Systemic Linguistics is an approach derived from work ol Michael Halliday. begur in the late 1950s aria silt ongoing

ILL'I

SCIENTIFIC PROGRESS 93

10.3 SCIENTIFIC PROGRESS

We have made significant progress, both in grammar development and discourse modelirg. within a
general design framework which encompasses both domain-dependent and domain-independent
parts [3]. We have designed a text generation system, named Penman, to embody these
developments.

We have accomplished several of our goals in grammar development:

" We have defined a precise, fully explicit notation for systemic grammars, including
structure-building. The notation has been programmed (in Interlisp) as part of a large
computational grammar named Nigel (this is a contribution to both computer science and
linguistics) [6, 7].

" Available definitions of various fragments of the grammar of English have been gathered
from the literature, reconciled, and expressed in the new notation [4].

• Gaps in the resulting coverage of English have ?een identified; many have been filled by
the development of new regions of grammar [7].

" The resulting syntax of English has been tested extensively for consistency and formal
integrity. As part of the testing, integrity criteria for systemic grammars have been
defined.

" A semantic notation for systemic grammars has been defined [2].
• This semantic notation has been applied to Nigel; new semantic definitions exist for over

half of Nigel's choice points [5).

Nigel's semantic definition of English has revealed that ordinary English syntactic constructions can
reouire information which is not commonly available in modern Al knowledge representations. Often,
this type of information is not definitely ruled out in principle, but no demonstrated approach to
representation exists for it. (For example, English provides modals such as could and may, which
may be used to express either uncertainty or possibility; it provides a contrast between mass and
count as kinds of reference; and it provides participant-oriented decompositions of actions (in clause
structure), generalized possession (in its possessives); a broad variety of attributes (only partly in the
numerous adjectives); reconceptualization of events as objects (in nominalization); and much more.
For current knowledge notations, most of these are unsolved representational problems).

We see English (and all natural languages) as highly evolved knowledge representations that are
well adapted for working with the kinds of problems and information that people create. Therefore.
the fact that Al knowledge representations cannot cover the needs of English syntax means that the
Al knowledge representations are unsuitable for a wide range of frequently encountered human
problems. Nigel's semantics creates the necessary basis for two kinds of impact on Al:

1. identification of representational gaps in particular notations, and
2. setting priorities for new expansions of knowledge representation capabilities, filling

those representational gaps.

2 The resulting grammar appears to be the largest grammar of any natural language in any functional linguistic tradition

94 KNOWLEDGE DELIVERY

We have accomplished the following in the creation of discourse models: 3

" created a new descriptive theory of text structure;
" applied the theory to between 50 and 100 texts, mostly small edited texts from published

sources; and
" developed a preliminary design for a text planner based on the theory.

In its constructive form. as a text planner, this theory specifies how to create a wide variety of
different kinds of text. It insures that the text will be coherent. It also identifies a collection of
inferences the reader can be expected to make, based on the text's structure above the sentence
level. In effect, it includes a theory of how people will "read between the lines," which was missing
from both prior computational work and prior linguistic work on written text.

As a result, the text planner will be able to decide what should be said explicitly and what can be left
for readers to infer. Inferential expression is clearly a great source of efficiency in multisentential
texts, but it has not previously been used because it is poorly understood in the literature. For text
generation, identifying the inferential component has two consequences:

1. The generator can allocate part of what it is saying to inferential expression, which does
not require its own sentences.

2. The generator can avoid saying things which would create undesired inferences and
suggestions.

10.4 IMPACT

The impact of this work so far has been in computational linguistics, artificial intelligence, and
linguistics. In computational linguistics, other research groups are seeking to use the Nigel grammar
as a component in future research work on text generation systems. They have seen its definitional
framework and its treatment of English as particularly attractive as a base for research in
human-computer interfaces. In artificial intelligence, some of the representationail gaps which Nigel
has revealed are being studied with a view to filling them. In linguistics, Nigel's extension of the
systemic framework is contributing to new studies of language function. All of these impacts have
begun even prior to the release of definitive publications of Nigel's content. We expect that as Nigel is
completed and published, its impact on these fields will be even greater.

Once Nigel is available as a research resource, researchers in text generation will be able to
concentrate more attention on areas other than sentential fluency. Furthermore, Nigel is large
enough that, when some significant gap in its grammar is found, it will be preferable to add the new
construction to Nigel rather than starting over on a domain-specific grammar. Development of the
grammar will become cumulative, with a resulting increase in research productivity simply because
discoveries are retained and propagated. (Research in the field of text generation to date has been
based principally on fresh starts rather than cumulative development.)

Part of the eventual nonresearch impact of the work will be to make computer interfaces easier to
construct and use, Another part of the impact will be to make new kinds of computer applications
practical-those which require easy expression of information to computer-naive people. This
creation of new application possibilities may be even more significant than facilitation of existing
ones.

3 The discourse modeling work, which started afler the work on grammar. is largely unavailable in documents II has been
the basis of parl ol a UCLA linguistics course, and we have published a preliminary report on one consequence of the theory

181 Other documentation is in preparation

FUTURE WORK 95

10.5 FUTURE WORK

Future work on Knowledge Delivery is aimed at completing and integrating the existing
developments in grammar and discourse, and on applying them in experimental text generators.
Planned applications include description of bodies of numerical data. description of states of
computer programs (especially Al systems), description of program execution, and explanation of
program reasoning.

Although the usability of the new semantic notaion has already been established, much work must
be done to make the actual grammar of English more comprehensive and reliable. This work is best
done by us at the source, as refinements by the supplier rather than repairs by consumers.

Work is also under way to assess Nigel's potential interaction with particular knowledge
representations. including KL-ONE and the XLMS family, for use in experimental text generation
applications.

REFERENCES

1. Mann, W. C., et al., Text Generation: The State of the Art and the Literature. USC/Information
Sciences Institute, RR-81-101. December 1981. Appeared as Text Generation in April-June
1982 AJCL.

2. Mann, W. C., The Anatomy of a Systemic Choice, USC/Information Sciences Institute,
RR-82-104, October 1982. To appear in Discourse Processes.

3. Mann, W. C., "An overview of the Penman text generation system," in Proceedings of the
National Conference on Artificial Intelligence, pp. 261-265, AAAI, August 1983. Also appears as
USC/Information Sciences Institute, RR-83-114.

4. Mann, W. C., "A linguistic overview of the Nigel text generation grammar," in Proceedings of the
Xth International LACUS Forum, Linguistic Association of Canada and the United States,
Quebec, August 1983. Also appears as USC/Information Sciences Institute, RS-83-9, October
1983.

5. Mann, W. C., "Inquiry semantics: A functional semantics of natural language grammar," in
Proceedings of the First Annual Conference, Association for Computational Linguistics.
European Chapter, September 1983. Also appears as USC/Information Sciences Institute,
RS-83--8, October 1983.

6. Mann, W. C., and C. M. I. M. Matthiessen, Nigel: A Systemic Grammar for Text Generation.
USC/Information Sciences Institute, RR-83-105, February 1983. The papers in this report will
also appear in a forthcoming volume of tre Advances in Discourse Processes Series, R. Freedle
(ed.): Systemic Perspectives on Discourse: Selected Theoretical Papers from the 9th
International Systemic Workshop, to be published by Ablex.

7. Mann, W. C., and C. M. I. M. Matthiessen, An Overview of the Nigel Text Generation Grammar,
USC/Information Sciences Institute, RR-83-113, April 1983.

8. Mann, W. C., and S. A. Thompson, Relational Propositions in Discourse, USC/Information

Sciences Institute, RR-83-115, November 1983.

97

11. SPECIFICATION VALIDATION

Research Staff. Support Staff:
William Swariout Audree Beal
Robert Balzer
Donald Cohen

11.1 PROBLEM BEING SOLVED

At ISI, we are investigating ways of alleviating the problems of software development and
maintenance through the use of a specification-based approach to software development. In this
approach, one uses a high-level specification language to create a formal specification of the desired
behavior of a program. This specification specifies what a program is to do. but does not necessarily
indicate how it is to be achieved. High-level constructs in the specification language, not available in
conventional programming languages, allow the user to specify the program's behavior without
requiring him to state how that behavior is to be achieved. Because the specification is high-level, it

should be easier to modify and test than a concrete program. Once the specification denotes the
desired behavior, it is implementeL by a process of transformational implementation. where
equivalence-preserving transformations are selected and applied to the specification to replace the
high-level constructs with more conventional low-level ones. (See Chapters 3 and 12 for a more
complete discussion of this approach.)

Unfortunatey formal program specifications can be difficult to understand. regardless of the
specification language used Yet. because the specification plays such a central role in our
approach, it is critical that it be comprehensible Our experience with Gist. a high-level specification
language being developed at ISI [1], has indicated that two major impediments to understandability
are the unfamiliar syntactic constructs of specification languages and dynamic interactions between
parts of the specification-parts that are often widely separated. These interactions may cause the
specification to denote behaviors that were not intended by the original specifier, or not to denote
behaviors that were intended.

11.2 GOALS AND APPROACH

The specification validation project now completed. has attempted to overcome the impediments of
unfamiliar syntax and non-local interactions by constructing computer tools to make specifications
more understandable, both to specifiers and to those unfamiliar with formal specification languages

One tool. the Gist paraphraser. addresses the syntax problem by directly translating a Gist
specification into English. We have found the paraphraser to be useful in both clarifying
specifications and revealing specification errors We expected that the English translation would be
useful to people unfamiliar with Gist, because it would make Gist specifications accessible, but we
were surprised to discover that experienced Gist specifiers found it helpful for locating errors. The
reason is that an English translation gives the specifier an alternate view of his specification. one
which highlights some aspects of the specification that are easily overlooked in the formal Gist
notation.

PREV IOUS PAGE

IBLANK

98 SPECIFICATION VALIDATION

The paraphraser provides a static description of a specification. A pair of tools. a symbolic
evaluator and a trace explainer, address the more difficult problem of making non-local specification
interactions apparent by simulating the dynamic behavior implied by the specification. Our approach
has been to discover non-local interactions by using the symbolic evaluator to analyze a
specification. The symbolic evaluator gathers and integrates constraints from the different pieces of
the specification. It discovers what sorts of behaviors the specification allows 2nd what sorts of
behz.viors are prohibited by constraints. A symbolic evaluator does not require specific inputs
Instead, it develops a description of the range of possible responses to a given range of inputs.
Because of this characteristic, it is possible to test a specification symbolically over a range of inputs
that would require many test runs if specific inputs were employed.

A specifier interested in the behavior of his specification may direct the evaluator to execute one of
the actions defined in the specification. As the evaluator executes the action some apparently
possible execution paths may be eliminated due to constraints, and a more detailed description of the
interrelationships within the specification is developed.

The symbolic evaluator produces an execution trace, which details everything discovered about the
specification during evaluation. The trace includes not only facts directly implied by the specification.
but also any further implications that the evaluator may have derived from those facts using
theorem prover. In addition, the trace records the proof structures justifying the facts it cont
Unfortunately. the trace is much too detailed and low-level to be readily understood by most pE e.
To overcome that difficulty. the trace explainer selects from the trace those aspects believed 'e
interesting or surprising to the user and uses that information to produce an English summary.

11.3 SCIENTIFIC PROGRESS

Several major observations have emerged from our research:

" Good quality English translations of Gist specifications can be achieved without imposing
a burden on the specifier. In designing the paraphraser. we recognized that a specifier
would have to adhere to certain style restrictions and might have to provide a few
annotations to a specification to indicate how it should be translated, but we wanted the
style conventions to be as natural as possible and the annotations to be as few as
possible. This was done for two reasons: 1) we felt that the paraphraser would be used
much more frequently if a specifier could employ it without making extensive
modifications to his specification. and 2) if a specification could be translated making
only minimal use of annotations, the translation would be more likely to accurately reflect
the specification. We have found that even specifications written before the creation of
the paraphraser can often be translated acceptably (though there is usually room for
improvement), because the stylistic conventions imposed by the paraphraser are close to
those that specifers follow normally.

" The paraphraser has also proved to be a useful tool for debugging specifications.
Originally, we thought the paraphraser would be useful mainly for making specifications
understandable to those unfamiliar with Gist. However, we discovered that the
paraphraser was also very useful in making specification errors more apparent, even to
experienced Gist users Partly, this is because the English paraphrase is more
understandable in most situations, but perhaps more important, it gives an alternate view
of the specification that makes apparent some aspects of the specification that are not
obvious in the formal notation.

* The Gist symbolic evaluator makes some fairly radical departures from the technology

that has been developed for symbolic execution of more traditional implementation
languages. The main motivation for this was the fact that Gist is based on a predicate
calculus view of the world, rather than the implementation view of storage locations

" T h e G i s

s y
b o i e v l a o

m a eI

Ief

i l
a i a

e p r u e
r m t e t c n l g

SCIENTIFIC PROGRESS 99

containing valu)es Tne ma~crJ.t - '' c heu le~fY~ h .c&,ve
all results, ratner than a fev, spe.:,al Yunclluis that UmT i

' e, p-,su;,ns Or "-o_ gnize
particular cases of impossible paths A srna -e, dt: - ure is 1nla condo;ral ewE-Cutns
are described in terms of conctona' results rather than a large (o, nfinite, set of
separate paths The main result of these depa iures 's that me Gist s:,rnbch,: e.'aluator
can discover land report) many more results v.nch may be of value to the user for the
purpose of understanding and denigging even if the> do riot drectly affect the
execution.
We have found that some of this information is useful in an unexpected way Often a fact
appears which is surprising not because we would have expected it to be false. but
because we would have expected a stronger result to be true Of course, the symbolic
evaluator does not say that the stronger result is false. but typically there is a good reason
that it cannot be proven, and this points out some interesting (possibl unwanted) feature
of the specification.
Producing English descriptions of symbolic executions is much more difficult than
paraphrasing the specification. A number of problems make the simple direct-translation
techniques (which worked well for the Gist paraphraser) unsuitable for the trace
explainer:

- Detail suppression. The trace is much too detailed to be described in its entirety.
The trace explainer uses the structure of the specification and heuristics about
what the user is likely to find interesting or surprising in selecting what to describe

- Proof summarization and reformulation. The symbolic evaluator uses an
augmented resolution-based theorem prover in deriving the consequences of the
specification. While this approach is arguab attractive for its generality and
simplicity. its arcane proof structures could impose a hardship cn the user The
trace explainer attempts to reformulate resolution proof structures Into more
familiar and understandable ones

- Referring expressions. With the Gist paraphraser. it was usua.l' acceptable to
use the name given to an ojoect in the specificaton as .'s referr'ng eypression in
the English paraphrase. The trace explainer cannot rel. on tnis technique alone,
since there are objects in the trace that do not appear in the specification
Moreover. depending on context, different referring phrases ma, be necessary
even though the same object is being referred to and converse> the same
referring phrase may be most appropriate for more than one object

11.3.1 An Example

This section presents an example specification and a macnine-producec description of its symbolic

evaluation This section assumes some famiharit, with Gist, although a detailed understanding is not

required.

The example presented here is a simplified version of a specification for a posta package route,

(see [2. 3]) The package router is designed to sort packages into bins corresponding to their

destinations A pac,,age arrives at a location called the source and its destination is read there A

binary tree of switches and pipes connects the source with the output bins It is the lob of the

package router to set the switches so that the package arrives in the proper destina!ton bin (see
Figure 11.1) The s mplified specification contains lust one switch and two bins In addition a

location called the z.-.,t has been defined as the place where all boxes are oriqginall located The

formal Gist specification appears in Figure 11-2 It is not necessary to understand the formal
notations, since an English translation of the specification (produced by the paraphraser) is available
Figure 11-3 is the English paraphrase of the specification's type structure and Figure 11-4 describes
the possible actions n this specification.

100 SPECIFICATION VALIDATION

tN .1. eSN L

Figure 11 -1: Package router

Having defined the type structure and actions, a specifier may wish to define some test sequences
of actions to see how the constraints of the specification interact to limit the behavior of the
specification in ways that are not obvious from the static specification alone In Figure 11.5. the user
has defined such a test sequence. The user has also given preconditions to define the initial state
and the structure of the switching network, and a postcondition to describe the final goal of the
system Notice that in the action body. all operands are specified nondeterministically. For example,
the first action invocation states that a box is to be inserted. but it does not say which box. The intent
of such a statement is that any box may be inserted, as long as no constraints are violated. This
nondeterministic reference is one of the freedoms Gist allows, giving the specifier greater expressive
power and preventing him from having to over-specify behaviors. Because the user does not have to
explicitly select parameters, he can see with just one test action whether it is ever possible to achieve
the postconditions using the particular sequence of action invocations given.

After the symbolic evaluator runs. the specifier can use the trace explainer to see an overview of the
results of symbolic execution (see Figure 11-6). The trace explainer highlights the behaviors that
appear to be surprising and explains why they occur by translating the symbolic evaluator's
mechanically produced proofs into English.

SCIENTIFIC PPOG-1-SS 101

begin
type box(Location I location, Destination

bin);
type locationounique supertype of

(input() definition~inputl 1;
source(Source- outlet I switch)

definition{Sourcel 1;
internal-Iocationounique supertype of

<switch
(Selected -outle.

Iinternal-location,
Out letl internal -location

:multiple)
definition{switch 1);

bino definition{binl, bin2) >;
agent PackageRouter() where

action Insert~box]
definition update :Location of box

from inputi to Sourcel;
action Set~switchl
precondition -S:ocation = switch
definition update :Selected -outlet

of switch to switch :Outlet;
action Move[box]
precondition box:Location - Sourcel or

box :Location = a switch
definition

if box :Location =Sourcel
then update :Location of box

to Sou rcel :Source- outlet
else update :Location of box

to box :Location
:Selected -outlet;

action Test[)
precondition switch I -Outlet = bin I
precondition switchi :Outlet =bin2
precondition Sourcel :Source-outlet=

switchi1
precondition for all box I

box :Location a inputi
postcondition for all box I

box :Location - box :Destination
definition begin

lnsert[a box];
Movela box];
lnsert~a box];
Move[a box];
Setfa switch];
Move(a box];
Movers box]

end
end

end
Figure 11.2: Formal Gist specification for package router

102 SPECIFICATION VALIDATION

There are boxes, locations and package-routers.

Each box has one location. Each box has one destination which is a bin.

Internal-locations, sources and inputs are locations.
Bins and switches are internal-locations.

Bin1 and bin2 are the only bins.

Switch1 is the only switch. The switch has one selected-outlet which is an
internal-location. The switch has multiple outlets which are internal-locations.

Sourcel is the only source. The source has one source-outlet which is a switch.

Input1 is the only input.

Figu re 11-3: Paraphrase of package router type structure

A package-router can insert a box, set a switch, or move a box.
To insert a box:

Action: The box's location is updated from input1 to sourcel.
To set a switch:

Action: The switch's selected-outlet is updated to an outlet of the switch.

Preconditions:
The switch must not be the location of any box.

To move a box:
Action:

If: The box's location is sourcel,
Then: The box's location is updated to the source-outlet of sourcel.

Else: The box's location is updated to the selected-outlet of the switch
that is the box's location.

Preconditions:
Either:
1. The box's location must be sourcel, or
2. The box's location must be a switch.

Figure 11-4: English paraphrase of possible actions

To test:
Action:
1. Insert a box.
2. Move a box.
3. Insert a box.
4. Move a box.
5. Set a switch.
6. Move a box.
7. Move a box.

Preconditions:
For all boxes:

The box's location must be inputi.
The source-outlet of sourcel must be switch1.
An outlet of switch1 must be bin2.
An outlet of switch1 must be bin 1.

Postconditions:
For all boxes:

The box's location must be the box's destination.

Figure 1 1-5: English paraphrase of a test action

SCIENTIFIC PROGRESS 103

1. A box, call it box1, is inserted.
Result: The new location of box1 is source1.

The explainer describes the action invocation as it was stated in the test case. It makes up the
name "box 1 " for this box so that it can be conveniently referred to later. The explainer then
describes the result of this action invocation.

2. A box is moved. The box must be box1 since
2.1 For all boxes except boxi, the box's location is input1, and
2.2 The precondition of moving a box requires that either:

2.2.1 The box's location must be sourcel, or
2.2.2 The box's location must be a switch.

Result: The new location of boxi is switch1.
Something surprising has happened. In the test case, the action invocation was made with a
non-deterministic parameter, but the constraints of the specification force the selection of
one particular box, namely box 1. The explainer recognizes this sort of behavior as surprising
and describes not only the restriction on binding the parameter, but also the reasons behind
it.

3. A box, call it box2, is inserted. The box must not be boxI since
3.1 The location of box1 is switchi, and
3.2 The location of the box to be inserted must be input 1 since the update in
inserting a box requires it.

Result: The new location of box2 is sourcel.

4. A box is moved. The box must be box1 since otherwise, at the start of step 5, the
location of box2 would be switch1 but the precondition of setting a switch requires
that the switch must not be the location of any box.
Result: The new location of box 1 is the selected-outlet of switch 1. Switchi is not the
location of any box.

At the start of step 4, box I is at the switch, and box2 is at sourcel. It would appear that either
one could be moved in step 4 since both satisfy the preconditions of the move. However, if
box2 moved, it would be impossible to execute the next step. So, as the explainer describes,
the non-local interaction with step 5 constrains the parameter binding.

5. A switch is set. The switch must be switch1 since there are no other switches.
Result: The new selected-outlet of switch1 is an outlet, call it outlet1, of the switch.

6. A box is moved. The box must be box2 since the precondition of moving a box
requires that either:

6.1 The box's location must be sourcel, or
6.2 The box's location must be a switch.

Result: The new location of box2 is switch 1.
The proof that the box to be moved must be box2 is actually quite involved. The system
currently has no good way of summarizing proofs of this type. so it falls back on another
heuristic. The explainer examines the proof structure to find the statement in the
specification that was used specifically to constrain this choice and displays it. That is. rather
than showing a proof, we just display the parts of the specification that became relevant in
constraining this behavior. This heuristic seems to work well, and it provides the explainer
with an "escape" so that it can convey some information even if it can't reformulate the proof.

7. A box is moved. The box must be box2.
Result: The new location of box2 is outleti. For all boxes, the box's location is the
box's destination.

Since the justification for this step is the same as for the preceding, the explainer omits it.

Figure 1.6: Machine-produced description of

symbolic evaluation of test

104 SPECIFICATION VALIDATION

11.4 IMPACT

It must be emphasized that the tools we have developed are laboratory prototypes and we have not
attempted to apply them to large-scale specifications. Even so, we feel the research described here
establishes the promise of this approach and. if further pursued, could benefit software production
substantially. First. these tools will make specifications more accessible and understandable both to
specifiers and to customers. As we have argued, formal specifications are often difficult to
understand, yet understandability is crucial if the specification-based approach to program
development is to succeed. Second, tools such as the Gist paraphraser can perform a valuable
debugging function by presenting a specification from a different viewpoint. Third, tools such as the
symbolic evaluator and trace explainer will enable a specifier to test a specification directly, so that
errors can be caught at a high level, before substantia! effort is invested in an implementation.

References

1. Balzer, R., Goldman. N. & Wile. D.. "Operational specification as the basis for rapid prototyping,"
in Proceedings of the Second Software Engineering Symposium: Workshop on Rapid
Prototyping. ACM SIGSOFT, April 1982.

2. Hommel. G. (ed.), Vergleoch verschiedener Spezifikationsverfahren am Beispiel einer
Paketverteilanlage, Kernforschungszentrum Karlsruhe GmbH. Technical Report, August 1980.
PDV-Report, KfK-PDV 186, Part 1.

3. Swartout, W. and Balzer, R.. "On the Inevitable Intertwining of Specification and
Implementation." Communications of the ACM 25. (7), July 1982, 438-440.

105

12. SUPERVISORY CONTROL OF
TRANSFORMATIONAL IMPLEMENTATION SYSTEMS

Research Staff: Research Assistants: Support Staff
Robert M. Balzer Wellington Chiu Audree Beal
David S. Wile Steve Fickas
Martin S. Feather

12.1 PROBLEM BEING SOLVED

Software specification, development, and maintenance continue to present an enormous problem
to everyone involved with computers. We believe that the computer itself must play a far more
significant role in the software development process than it does presently. The software designer's
role should be streamlined to require only decision-making and guidance, while the computer's is
expanded to include manipulation. analysis, and documentation. The key to such support is to
capture in the machine all crucial information about the processes of specification, design,
implementation. and maintenance.

For severar years we have been developing an alternative software development paradigm based on
this tenet [1].' We envision a future user developing a high-level specification of what he or she wants
a program to do, and transforming the specification into an efficient program, using a catalog of
(proven) correctness-preserving transformations (see Figure 12-1). Most debugging and all
maintenance will be performed on the specification, which will have an operational interpretation
suitable for testing Reimplementation will be necessary to tune implementations exhibiting
unacceptable performance characteristics.

Informal _ !Speohcation Formal Optimization Concrete
Requirements Design . Specification iDesgn I Source

m[Prototype)

Figure 1 2- 1: Alternative software development paradigm

iSeveral researchers led by Rober M Ba!zer working on) proiects funded b) DARPA. NSF and RADC. have provided the
foundations for this paradigm

106 SUPERVISORY CONTROL OF Ti

This automation-based paradigm will rely on an integrated set of tools that directly support human
developers in the processes of requirements specification, system design. implementation, and
maintenance It will be characterized by the fact that the entire evolution of a system-the history of
all four of these processes, as directed by the developers-will occur and be recorded within the
integrated environment. This history will provide the "corporate memory" of each system's evolution
The 3oftware development system will be an active participant in the development process, using the
history to determine how these four processes interact: what assumptions they make about each
other, what the rationale behind each evolution step was. how the developed system satisfies its
requirements, and how to explain all of these to its developers.

We have developed a specification language called Gist, which formalizes some of the expressive
constructs commonly used in natural language specifications, including nondeterminism ("a
message from another site"), descriptive reference ("the longest message"), historical reference
("the last message the user looked at"), constraints ("never send multiple copies of a message to the
same person"), and demons ("if a week passes without a reply to a request. inform the sender"). A
Gist specification describes the behavior of both the program and its environment this provides a
natural way to specify embedded programs that interact in complicated ways with their environment.
Gist's expressive power makes it possible to specify what behavior a program should exhibit without
saying how it should be implemented [2].

Given that we already have a language for expressing specifications three major problematical
areas require research and development before our transformation-based paradigm can succeed:

1. Tools, methods, and support facilities for acquiring. designing, and developing the
specification consistent with a user's intent:

2. Tools, methods, and support facilities for implementing and optimizing the
specification;

3. A framework for understanding. reusing and maintaining previous specifications
and optimizations.

The primary goal of the Supervisory Control of Transformational Implementation Systems
project was to design and develop a framework, for understanding, reusing. and maintaining previous
specifications and optimizations.

12.2 GOALS AND APPROACH

12.2.1 Overview

Over the years, the group has developed several tools to support the specification process, i.e.. to
help bridge the gap between the informal intent inside the specifier's head and its formal expression
in Gist. Specifications in any formal language tend to be difficult to understand, because they are
usually concise and lack the redundancy found in natural language descriptions of the same
behavior. Hence, we have designed a program that exposes static aspects of Gist specifications by
paraphrasing them into English [8]. To expose dynamic implications of a specification, we have
developed a symbolic evaluator that looks for interesting consequences of a Gist specification [4],
and a program that explains the symbolic trace in English [9] By clarifying what a specification really
means, such tools help validate the specification. i e.. increase the specifiers' confidence that the
specification matches their informal intent and the users' confidence that the resulting system will
meet their needs. (For more information on the Gist paraphraser and the symbolic evaluator see
Chapter 11.)

GOALS AND APPROACH 107

However, we have discovered tha! wrer, _feoplt- specf . , t rt.' ; te, use air
incremental technique fot Conve '! "' le 'iforr ... n- .. ':. : prOnjr; ' I r,

technique is built on a very stylized set of methods suc , refinement ci n.odehng deta
generalization of functionality introduction of exception nto idea zec specificatior anc
restriction of scope or functionality In the future, our Mappigs project (see Chapter will address
the problem of capturing these methods as formal methocs thus permittr'g the specificaton
development to appear much more natural to future readers of tMe specification We have called
these methods high-level editing commands to emphasize the fact that they do indeed change the
specification, yet at the same time convey more information to a reader than conventional KeystroKe
editing commands. The use of high-level editing commands to design specifications is analogous to
the use of transformations to develop implementations (see Figure 12.2).

High-Level Correctness-Editing Preserving
Commands Transformations

Informal FpecfcaoFrmlOptimization Coucrcet
Requiremns iein Specification aDesign Program
eq rements Design [Prototype]Prga

Figure 12-2: Design process mappings

Since its inception, the Mappings project has addressed the problem of representing programming
knowledge in terms of our specification language, Gist, by discovering correctness-preserving
transformations for translating Gist's high-level constructs into the lower level constructs used in
more conventional programming languages. Hence, the Mappings project addresses the second
problem mentioned above: encapsulating programming knowledge in terms of concise mappings
from Gist into alternative implementations. In the future, more emphasis will he given to mappings
for optimization of these implementations.

The Supervisory Control of Transformational Implementation Systems project developed the system
support needed to facilitate the automated implementation of specifications using transformations It
addressed the third problem mentioned above: the framework for describing the design activities of
specification and implementation. This paradigm is based on capturing the processes of
specification, design, implementation, and maintenance within the computer and supporting them via
automated tools. We have developed an experimental system in which the user develops not only the
implementation, but also a formal explanation of how it arose the design decisions, assumptions, and
optimization steps, and their structural relationships, are recorded in a formal design document
suitable for automatic reuse by the transformation system (see Figure 12 3) Hence, using this
formal development the system can replay optimizations on a changed specification to produce a
new implementation automatically [10]. Naturally, all future mappings and transformations will be
designed to fit into this framework,

108 SUPERVISORY ONTROL OF TI

Decisions
and

Rationale

High-Level
Editing Formal Transformations

Commands Development Strategies
Heuristics

Informal Specification Formal Optmization concrete
Requirements 0 Design = Specification Design Source

(Prototype] Program

Figure 12.3: Formaldevelopments

Our primary goal is to obtai- a usable development system. We believe that the leverage provided
by our alternative software development paradigm (especially in the beginning) will arise from its
support of the maintenance process rather than from its support of the initial implementation. This is
because the increased formalization of the development process requires more involvement by the
human developer (at least until the level of automation is significantly increased) for the initial
implementation. On the other hand. maintenance involves small changes. Increased formalization of
these changes is insignificant if the already formalized development can be adapted and reused.

The SCTI project has made considerable progress toward this goal, including the creation of a
language-independent development system called Popart, with facilities for grammar-based editing,
analysis, and transformation; a formal representation of program development--explanations of how
the implementation was produced, a compilable subset of our (wide-spectrum) formal specification
language to act as a target language for transformation; a goal-directed transformation selection and

application mechanism; and a system for recording and supporting the evolution of real systems (to
improve our understanding of this evolutionary process). However, much remains to be done.

Current limitations include inadequate automation of transformation selection and application,
inadequate analysis tools (verifying the precondition of transformations), an incomplete
transformation catalog, no performance prediction tools, no direct support of maintenance, and
inadequate integration of current capabilities into a coherent system.

Our primary research goal for the future is to support reimplementations, in a follow-on project
called Transformation-Based Maintenance, This support will take three forms: strengthening the
formal representation of developments (especially the rationale behind each step), supporting the
evolution of specifications through the same mechanisms that support maintenance (and in fact
integrating the two processes), and developing a formal language of modification for both
specifications and developments.

-11 - r _

SCIENTIFIC PROGRESS 109

12.3 SC(ENTIFiC PROGRESS

The SCTI project has focused on the furmaikza,c," mechanization. and automated sujpor1 of the
development process th'ough trar,sfor,atiors ujr primar, tool is Pocar.'2 a orototyDe program

oe.elopment system v.hich appies transfo-"'-arom' selectec , the user The cetaiec s-rateg, used

for such transfo-mation apphcatlons c-,, ied a nevelopmen:. is formal zed in a rnoc;.;anle and

executable ianaoa'e oalled Padd~l We have also created a se* of analysi5 ! w. c, cetermine
whether the enr.:ing conditcns of se,!:tI rles a'e satisfied (If not. then they shouid become

subgoals to be satisfied so that the development can proceed) Ag oal-directed p'biem soiver has

been built to automate the achievement of these and other goals posed b the user (this problem

solver has not yet been integrated into Popart) Anothe, facility. structure comparison between the
program and the transformation pattern, detects differences between the left-hand side of a selected

transformation and the current state of the program These differences are eliminated by the creation

of subgoals. (This facility has not yet been integrated into Popart.) All of this transformation activity
leads to the conversion of specifications written in Gist into programs written in a compilable subset

called Will. Finally, we have built a separate system (not based on transformations). called the

Develop System, to record the actual evolution of real systems in order to sharpen our perceptions

about how that activity should be supported by our tools.

12.3.1 Formal Representation of Developments

We have created Paddle, our language for documenting the development structure of a program
from a specification, This language represents a development as a hierarchical plan that
incorporates subplans, strategies, refinements, and transformations. This development defines, in an

executable form, the sequence of transformations and manipulations that must be performed to
convert the specification into a program. In this mode, each refinement defines how to accomplish
the refined goal by modifying the specification/program resulting from previous steps, The execution

of such a development can be faulty, because some development step either has not yet been defined

or is inappropriate for the current state of the srecification/program being developed. When this
occurs, the development can be edited using the Popart system (described below) and its execution

can be either continued or restarted from some previous point.

The development is thus a "program of transformations" for implementing a specification which
can be debugged via standard interactive debugging techniques. It is a structured, documented, and

(when it successfully runs without manual intervention) fully automatic method for implementing the

specification.

This formal manipulable representation of the development is our primary scientific achievement

and is more fully documented in [10].

12.3.2 Prototype Program Development System

A grammar-based pattern matcher has been enhanced with several other grammar-based tools to
become a prototype Program Development System, Popart Popart includes grammar-based tools
for editing and prettyprinting a specification/program, for transforming it via grammar-based pattern
matching and replacement, and for automatically simplifying the transformed specification/program

2 The underlined items identify our accomplishments and are described in detail below

110 SJPER V'ISOPY CONTPOL OF Ti

and "conctlioning" it (changing its Syntactic for-, to facilitate subsequent transformations The
automat:c simplification and ' conditioning TerhamjS,,jc are CLrenily Quite p'rm'tive while the other
capabilities are more mature. complete and usabile In additioni this Prototype Development System
includes the development ideas descricec! ir Sect cr 12 3 11and is also described in more detail in

[101.

12.3.3 Compilable Su bset of Gist (Will)

We have iojentified and implemented a conl-Iau). sibset of Cis. h-S siibset VYi siares much
syntactic Structure with Gist reducing the neec for ' form cnarg:, 'nscmai but it replaces
many ot Gist's semantic freedom-s w!!h s~m ,i bW:* low~e, ie!e coris-tc:c vho car- be more
efficienll compiled Geneirally. Will suppor,.s tlht- cdaa :pgstructuri! ng, and associative retrieval of
Gist anc its event-driven loernon-based i p'ocess rig I-, Ioes no' Support tne fu:! semantiics of
historical references, constraints or inferences instead. it supports more restriCted itersions such
as constraints thal cause an exception to be -aised when. vio~ated (in Gist. constraints affect the
non-deterministic control structure, so that execut~ol proceeds only along paths that do not and will
not. violate them), and monotonic inferences cnce true they remain true even if their suppor!
sulpsequentl, vanishes)

Will s significance lies less in its nove; feal, res than in its expected role in our effo-ts ic cevelop a

usable transformational implementation system N~ov we nave a (nhion-level mpir-mentalton
language to use as a target for our developrments that will be sntacticall , com)atibie- with our

specification languaae This compat;bilit-1 will pe-rmit us to focus our trarisinrmatior~L~On efforts
on the few (but important) semantic cistrictions netween the two languages

Furthermore using user-supplied annotations of how to compile s-ecift2 P- g',V1 ,, -ces a3ttached
during the development steps ta~er in Po~artI the compiler can produce tnh- fulk iirt~& terkcsp
and Zetalisp data strulcturepn Annotations ac-omplish tw'o important objectives Fi', *ne act, hirO

delayed optimizations (the decision has been made bit not ye: carriedl out) 3..nqfarmhe,

transformations to be either sensitive or insensitive to the decided limplemntation, in ex)amining or
ignoring the annotation) w~ithouit having to ronitend with the syntactic variabilit,, that caryitro them out
would entai! In a strong sense tne airnnoations fnrm an abstract formal desan - lanux a'ae that acts as
an explicit bridge between the decision space and the artifact being desligne e e oect to continue
investigation of the power of the annotation mechanism.

Second. the annotation mnechanism permits optimizations that are competitive with hand
construction We expect to use Viill as our implementation language for all future worKr and to use the
unannotated form as a "rapid p)rototype "Thus even without using our development system to map
from specification to implementation we will be able to use a much higher level implementation
language to express prototypes that can later be optimized via annotations

1 2.3.4 Goal-directed Development

in his do(tnral di, ,rtaticrin [F] !Steve Fickas has created an auitomated dvevel-);-s' m that

s.elects and i-pi-,. tranfnrmatin to achieve developer- stated ccals Ar- har c~'- a ngl,.,-(
(Citrif-n' 1tainmc)ols a c ataioq of methods for achieving thox _ CrL t r' to

Ormiiv- rar'rnat ()rbs anrd & hicher levei planning innwledre caal' for

r~~'i o ~ t r v] j-rnl rF)d 3 stari-4ard artif i3r mVQ''

._lver Al ,f i r hi" -)i ; rTin1nte in Hearsa,-lll [1. a franw vror~ i-f) ,vr i ,

SCIENTIFIC PROGRESS ill

Experience with the system to date, though quite limited, indicates that the level of automation has
been improved by about an order of magnitude (i e a developer has to make only 10 percent as many
decisions as before). The contribution of his thesis ijes in its demonstration of the feasibility of this
level of automation, in its development of a goal language through which the developer directs the
system, and in the codification of deveioprnent kno,'.l-dge and selection rules.

As a thesis proIect, the system was built separatel, from 'Popart It has a quite limited Knowiedge
base (methods. goals, and transformations) and is very slow because it uses Hearsay-ll for both its
problem state and program state representations Nevertheless. we believe it is an important
contribution and intend to integrate its capabilities into our Popart system. It is described in more
detail in [6].

12.3.5 Analysis Tools

Flow analysis information-both data flow and program flow-is useful to the implementor when
choosing optimizations and determining the truth value of enabling conditions for transformations.
Tools to compute such information have been implemented for Gist. These tools dynamically
recompute information on demand after specification changes have been made. Of particular
significance is the language-independent, table-driven mechanism which was designed for
expressing these computations and incorporated into Popart.

The particular analysis "tables" implemented are relation usage, relation retrieval, relation insertion,
object creation, object deletion, action and demon invocation, and variable scoping. Some problems
with the definitions of these tables have led to the belief that a more canonical form than the parse
trees produced by Popart should be used. Hence, we are now attempting to base some of the
transformations on a more "abstract syntax."

12.3.6 Develop System

We have created a system (Develop) that automatically captures the development and maintenance
of actual programs written in Interlisp, in terms of the objects (data structures, functions, macros,
etc.) created and modified (including the modifications themselves). This trace of development
behavior is annotated by statements of intent by the user, indicating the type of development step
(augmentation, generalization, revision, exception. specialization, establish-convention.
reorganization, bug-fix, tuning, etc.) being initiated and a descriptive comment.

During the modifications, the user can recursively initiate substeps that modularize his efforts to
achieve the intent of the higher level step (goal), Also, the user can post "pending steps" on an
electronic blackboard for future implementation (this useful notepad allows us to record future plans
as they arise). It is important to recognize that this represents a different paradigm for construction of
the formal development than that supported by Popart and Paddle.

Limited use of this system has shown that the development history can become the primary source
of internal documentation (for the maintainer) and that the existence of this development history
encourages more orderly development and maintenance.

Our primary reason for creating this system was to gather histories of the actual evolution of real
systems in order to provide insights into how users conceptually structure developments and into the

112 SUPERVISORY CONTROL OF Ti

dynamics of system growth and modification These insights will be fed back into the redesign of our
formal representation of developments and the support mechanisms of Popart In fact. they have
already become the basis for the "high-level editing' language outlined in Section 12.2.1 However
we unexpectedly found that these developmnt histories could also provide support for novel
maintenance tools within the Develop System

12.3.7 Structure Comparison

Another graduate student. Well,ngtor Cnh, nas c -,-)peted ns thests on comparing two versions of
a specification/program This comoar'sor" he jior!sed N t.c ways First it can be used to help
people understand what has cha'ged be, s,. a eeopment either vsually, via highlighted
portions of the prettyprnted spec t!catio ga- .a -eida. aescriptior of the changes at an
interesting (semantic) tvel of g' -u ta,t Sec c car- -o ,,i-e a descript-on of the differences
between the current state arn a 2.oa' state (eve-taIl, *qten:t as input to the goal-directed
development system developed oy FIc~as)

The scientific contribution of tnis structure comparison system lies in its rules (some of which are
heuristic) for forming explanations, and in its formalization and extension of the primitive modification
operations upon which such explanations are built Some of these primitive modification operations
include semantic information about the specification programming language. This work is more fully
described in [31

12.4 IMPACT

The Superv~so%, Control of Transformational Implementation Systems projeci is supportive of the
transformationai mplementaton software aevelopment paradigm[l]. Initially, this paradigm will
dramatically improve orogrammers abilit to maintain software systems: ultimately. the entire lifecycle
from design through specification implementation. debugging. and maintenance will be streamlined.
This will allow programmers to more rapidl) produce and maintain software systems. and will maKe
feasible the construction of larger more complex systems with enhanced functionality and flexibility
In addition, this project will codify the strategic. language-independent knowledge used by
programmers in specification and optimization. This knowledge will also be userul for programmer
education. independent of its mechanized application.

12.5 FUTURE WORK

12.5.1 Attempted Realistic Use of the Popart System

Our grammar-based program development system. Popart, has been subjected to considerable
experimentation. Transformations of several example specifications were attempted with varying
degrees of success. Each of these examples is either a real system implemented by someone else or
a part of our software system Among the examples attempted were a package routing specification.
two different portions of the parser used in the Popart system and a VLSI implementation of a hidden
line elimination and shading algorithm for a graphics display Transforming these examples
demonstrated that real programs could be developed successfully with Popart Yet simultaneously.
these examples were unsuccessful from the standpoint of practical use of Popart (in the sense that
improvements in the overall effort reliability and understandability were not realized), for the
following reasons

FUTURE WORK 113

" Popart itself was not adequately user-engineered for efficient program manipulation
* A large body of transformations for the specification language. Gist, had not been built

up.
" The language for expressing the optimization plan and transformations (Paddle) was

found to be inadequate for the following reasons:

- In Paddle, goals must be achieved in the same order that they appear in the goal
structure. Frequently this restricts the user's ability to introduce goals as they
naturally occur during the design process because their complete achievement will
not be realized until much later.

- The language for describing transformations is too primitive This makes
expression of frequently occurring idioms clumsy.

- Generally, the commands in the editor are too low level to describe the particular
optimizations needed This is strikingly obvious with commands intended to focus
the editor.

" The reliance of "original specifications" on their predicted implementations was
discovered to be significant. Hence, how to feed information from the implementation
back into the specification design is problematical.

The first two problems have been partially addressed. Some effort was spent improving the facilities
for editor interaction. A rather thorough Popart manual was produced. Based on the Develop
System. described in Section 12.3.6. some facilities for more efficient recording of a development
were added A small, useful set of transformations and editing commands specific to Gist was
created.

Considerably more difficult are the problems with the language for expressing program
developments. Paddle. Paddle is currently being redesigned to incorporate a more goal-directed
model of system/user interaction, along the lines proposed by Fickas (discussed in Section
12.3.4 above). In addition, more powerful primitives for manipulating programs are being
incorporated, along with a variety of options for maintaining the editor's focus of attention.

It is interesting that the final problem mentioned above-feedback from optmization tc
specification-has led to the discovery that the design of the origina' specification involves a process
quite similar to the desigr of an optimization in fact Paddle is adequate for expressing the
structure of both types of design. but not for expressing the content of such design struct'res - Pcr
both optimization and specification design a higher level editing lang,.age is necessay Thcse two
tasks, integrating the design of the specification with the design of its Implementation and creatnc
higher level editing operations for such design, are part of our proposed new worK

12.5.2 Research Effort

We now understand that the increased formalization of the development process which necessarily
accompanies its capture and support within the computer, requires increased involvement and effort
by the human developer This additional "formalization" cost is presently very expensive for initial
implementations of software systems However, initial implementation is not the major expense in
creating software systems Instead, maintenance and extension of functionality consume the malority
of all development effort Fortunately in our alternative software paradigm supported by a program
development system, the leverage lies in maintenance rather than in initial implementation.

3 This similatly has been ta'er into accouni in Figure 12.3

114 SUPERVISORY CONTROL OF T]

In the current software paradigm the information needed for maintenance is not available (because
the development process is undocumented and the maintainer has only the source listings to worp
from), while in our altetnative paradigm it is available in the form of a formalized development. The
cost of formalizing the original development can provide leverage if It car- be usec as the basis for
successive reimplementations during maintenance Hence. developing the conceptual basis afd
tech'nology to support automatec reimplementaticn (via repla, ng the p'e.ius deveiopment) is tre
primary scientific focus of our foliow-on project. Transformation-Based Maintenance

In addition to this primary focus we have tv,o :ote' major scient!fic goals and two engineering goals
of interest. The two scientific goals are ntegratingtine process of Implementation development with
that of specification evolution (and supporting them with common mechanisms). and developing a
formal language of modification for both specifications and developments Our twc engineering
goals are continued development of Popart ano the Deveic-, System in the framework of the
Information Management system under development at IS! [7,

REFERENCES

Balzer. R., C. Green, and T Cheatham "Software tecnnc.c , r the 1992 s Using a new
paradigm." IEEE Cornputer. November 1983

2 Balzer R.. N. Goldman, and D S. Wile. "Operat;ona sDecificat;o as the bass fo, rapid
prototyping." in D'cceea~ncs o' !he Sec.'-c S, , e'-' :: 4.a z 5 ':rksnoo on
Raoic Prototyg' ng, ACM SIGSOFT April 1982

3. Chiu. W.. Structrje Compa..:son ano Seriar, c e'c.'eCa .. e't- ces. Ph D thesis
University of Southern California. 1981.

4. Cohen. D.. "Symbolic execution of the Gist specification language " in -'ceec. 'gs c' tne Eichtr-
International Joint Conference on Ar';ficial /nte uence. pp 17-20 Karlsruhe Germany. 1983.

5. Erman, L.. P. London, and S. Fickas. "The design and an example use of Hearsay-Ill." in
Proceedings of the Seventh International Jo i- Confere'oe 2 'ca nelgence, pp. 409-415.
Vancouver, B.C.. Canada, 1981.

6. Fickas. S.. Automating the Transformational Devetopmrent of Scftware. Ph.D thesis, University of
California at Irvine. 1982. Issued as USC/Information Sciences Institute. RR-83-108 and
RR-83-109, March 1983.

7. Neches, R., R. Balzer, D. Dyer, N. Goldman. and M. Morgenstern. "Information management: A
specification-oriented, rule-based approach to friendly computing environments," in
Proceedings of the IEEE Conference on Systems. Man. and Cybernetics. IEEE, January 1984.

8. Swartout, W., "GIST English generator," in Proceedings of the National Conference on Artificial
Intelligence, pp. 404-409, American Association for Artificial Intelligence. Pittsburgh, 1982.

9. Swartout, W.. "The GIST behavior explainer," in Proceedings of the National Conference on
Artificial Intelligence, pp. 402-407, American Association for Artificial Intelligence. Washington,

D.C., 1983.

10. Wile. D. S., "Program developments: Formal explanations of implementations." Communications
of the ACM 26, (11). November 1983. Also available as USC 'Information Sciences Institute,
RR-82-99, August 1982.

13. INTERLISP

Research Staff:
Gary L. McGreal
Ray Bates

Mark Feber

Don VorecK
Dave Dyer

13.1 PROBLEM BEING SOLVED

This project is creating a self-sustaining support center for Interlisp The goal of the project is to
provide large-address-space portable versions of Interlhsp for the VAX and for other hardware

architectures.

13.2 BACKGROUND

A serious problem has arisen within the Artificial Intelligence and Computer Science research
communities as the research projects using LISP have developed larger and more complex programs
A basic limitation of the PDP-10, on which current systems are implemented, has been reached. The
address space available (256K words) is too small; current research projects routinely require several
times as much space. A recent DARPA-sponsored workshop on symbolic computation estimated
that minimum requirements are 8 million addressable words and that these requirements are
expected to grow towards 2t3O words; conventional wisdom estimates this growth at .5"bts per year

Experience has consistently shown that programming costs rise exponentially as resource
limitations are approached. Thus, many LISP-based research projects are expending considerable
resources in system programming efforts, to mitigate the effects of this address-space limitation.

This difficulty provided the incentive for the community to consider various alternatives The first
question was whether LISP was the best language for such large, complex research projects. The
result of this discussion was the conclusion that there is no existing widely acceptable alternative
(although this is an important research area). The second question was which dialect of LISP is best
There are two main dialects. Interlisp and Maclisp, which differ mainly in their control structures and
the environment developed around the language. The user communities expressed strong
preferences for their own dialects. The Maclisp community is pursuing a number of alternatives
including an attempt at a consolidation of dialects, the Common Lisp project, and two new dialects
CONS, implemented on new hardware (a specially designed LISP machine), and NIL being
implemented on an S1.

ISIs Interlisp project addresses the needs of the Interlisp community. For this community. the LISP
machine option was rejected because of concern for the availability and maintainablit. of the
hardware and because of dialect incompatibilities. Instead, the VAX computer was chosen as the
initial machine for Interlisp implementation on the basis of its widespread use throughout the
academic community and the opportunity for technology transfer such widespread use affords

116 INTERLISP

13.3 GOALS AND APPROACH

The ISl-Interlisp project was begun in mid-1979 to provide a newer, more powerful alternative to
Interlisp-10 as a LISP environment suitable for research The result is an efficient, portable, full,
functional system compatible with other Interlisps and supporting a large vwrtual address space
ISI-Interlsp runs under two operating systems. VMS and UNIX 1 The implementation of ISl-Interlisp
on the VAX. one of the most popular machines in research facilities and on college campuses today,
assures it of a long, productive future The initial sponsor of ISI-Interlisp was DARPA. under contract
number MDA 903-81 -C-0335.

The implementation of ISI-lnterlisp relied heavily on two sources: Interlisp-D, which runs on
personal computers developed at the Xerox Palo Alto Research Center, and Multilisp. implemented at
the University of British Columbia for the IBM-370. ISl-lnterlisp is a more traditional implementation
than some of the newer LISPs It is written in Interlisp itself and in C. the implementation language for
the UNIX operating system, and took approximately six person-years of effort to complete.

13.4 PROGRESS

The major accomplishment this year was the completion of a native VMS version of Interlisp based
on VAX-11C The first VMS version of Interlisp required the use of a UNIX emulator for VMS, called
Eunice (developed at SRI International by David Kashtan). Using Eunice caused several problems
The major problem was that a VMS user would have to become familiar with UNIX file names to use
Interlisp. Furthermore, a site would have to install Eunice in order to run Interlisp. Since we replaced
Eunice with VAX-11C. ISl-lnterlisp is easier to install and use, faster. and more reliable,

Other major tasks included the development of a new code generator having a peephole optimizer
More functions were coded inline and sor' bottlenecks were removed. The new code generator
makes the system smaller and faster.

Many new Interlisp packages were produced or imported. One major package was for UNIX,
enabling ISl-lnterlisp to use UNIX pipes.

In addition to the development effort, there are several major ongoing Interlisp tasks. Interlisp is
constantly growing and changing, and ISl-Interlisp must also change to ,.ep up with improvements.
The task of maintenance is another ongoing effort. User feedback anc I e maintenance effort allow
problems and bugs to be discovered and eliminated.

13.5 IMPACT

The premise of the Interlisp project is that no one machine will (or should) dominate Interlisp usage
in the future as the PDP-10 has until now. Instead, new, more cost-effective machines will be
appearing with increasing frequency. Therefore the new, large-address-space Interlisp should be
constructed to be portable, and the Interlisp support center should migrate this system to new
hardware on a periodic basis. Interlisp has been a major dialect of LISP for the Al research
community. The introduction of ISl-lnterlisp will make it possible for a much wider set of users from
the academic community, government, and private industry to become involved with Al tools.

1speCifically Berkeley 4.1 VM/UNIX

FUTURE WORK 117

13.6 FUTURE WORK

in addition to the ongoing maintenance tas, s several development efforts are planned for the nexi
year:

" Micro-code some functions of ISI-interlisp on a VAX 780 under VMS This will improve
the speed of ISI-lnterlisp substantially by removing some bottlenecks.

" Produce a version of ISI-lnterlisp that will rn under BerKeley UNIX 4.2 UNIX 4 2 is a
major release of UNIX and Interlisp requires modifications in order to run on that system

" Make ISI-lnterlisp more usable under VMS The first step is to allow the user to call any
system service under VMS The second step is to enable ISI-lnterlisp to use VMS
mailboxes

" Make ISI-lnterlisp respond more effectively when a critical resource of the operating
system such as sufficient memory or a floating point accelerator, is lacking

" Maximize the sharing of memory among users on VMS and UNIX 4.3 The current system
does not share pages among ISI-lnterlisp users By having ISI-lnterlisp share pages. the
operating system will be able to support more ISl-lnterlisp users.

" Produce Interlisp for other machines. The ISI-lnterlisp implementation of Interlisp is
portable. The main requirement for a foreign machine is that it support the C language
and have virtual memory support. The main tasks would be coding a new code generator
and designing important data structures to match the foreign machine architecture As
the use of Interlisp and Al spreads, more and more manufacturers will want Interlisp ISI
will be ready to supply them with a version of Interlisp.

" Code a different garbage collector. Two different garbage collectors are being
considered. ISl-lnterlisp currently uses a stop and copy collector, which is acceptable for
UNIX but is wasteful for VMS. A better collector would be a mark and sweep garbage
collector. A reference count garbage collector would probably be the best solution for
both VMS and UNIX, but this may be more difficult to implement.

119

14. COMPUTER RESEARCH SUPPORT

Director: Gary L. McGreal
Technical Assistant: Dale Russell
Manager NOSC Facility Serge Polevitsky
Liaison Gunter Facility: Dave Hale

Technical Staff:

Systems Software: Hardware: Operations: Network Services:
Joel Goldberger Daniel Pederson Walt Edmison Vickie Gordon
David Bilkis Glen Gauthier Steve Carroll Anna-Lena Neches
Mike Butler Ramon Gonzales Sam Delatorre Wayne Tanner
William Moore Norman Jalbert Brent Gesch Christine Tenney
Craig Rogers Raymond Mason Roylene Jones
Craig Ward Jeff Rolinc Joseph Kemp
John Weber Daniel Trentham Linda Sato
Tom Wisniewski Leo Yamanaka Toby Stanley

Mike Zonfrillo

Support Staff:
Manon Levenberg

Kay Freeman
Julie Kcomt
Robert Smith

14.1 PROBLEMS BEING SOLVED

The Computer Research Support project is responsible for providing reliable computing facilities on
a 24-hour, 7-day schedule to the ARPANET research and development community. At the same time.
the project makes available to ARPANET users the latest upgrades and revisions of hardware and
software. The project provides continuous computer center supervision and operation. and a
full-time customer-service staff that is responsive to user inquiries. This project supports three
computer installations, the largest at ISIs main facility in Marina del Rey. The other supported
facilities are at the Naval Ocean Systems Center (NOSC) in San Diego and at Gunter Air Force Base

14.2 GOALS AND APPROACHES

The Computer Research Support project provides support in four interrelated, though distinct
areas. Hardware System Software. Operations, and Network Services. The goals and approaches of
each are summarized below.

14.2.1 Hardware

To achieve a reliability goal of 98.7 percent scheduled uptime, the preventive and remedial
maintenance responsibilities have been assigned to an in-house computer maintenance group. This
group provides 20-hour, 5-day on-site coverage and on-call standby coverage for after hours. To

J

120 COMPUTER RESEARCH SuPPOT

maintain the reliability goals, preventive maintenance is very closely controlled and on-line
diagnostics and analysis are emphasized, A primary component in the reliability and availability of the
hardware is the physical environment in which it exists. Accordingly, a significant amount of time and
resources is expended in ensuring that the best, most cost-effective environmental controls are used
at all facilities that ISI services.

14.2.2 System Software

The software group's primary goal is to install and maintain, at maximum reliability, ISIs VMS. UNIX
and TOPS-20 operating systems and applications software In order to accomplish this goal. the
group provides 24-hour, 7-day coverage to analyze system crashes and to provide appropriate fixes-
In addition, it is the group's responsibility to install, debug, and modify both the latest monitor
versions and the associated subsystems available from the vendor.

14.2.3 Operations

The operations staff is responsible for operating the computers and overseeing the systems and the
environment. There is 24-hour, 7-day on-site coverage at the Marina del Rey facility. One of the
primary responsibilities of the group is to provide protection and backup for user files such that there
is virtually no possibility of loss of data integrity or significant information This goal is achieved
through a variety of means, including regularly scheduled full and incremental backups of all systems:
permanent archivals of requested or infrequently accessed system and user files tape storage and
pointers to all information extant at the time of removal of directories from the various systems. and.
perhaps most important, redundant offsite storage of all significant information active on the disk
structures or existing on tape within the facility. When a problem occurs. the on-duty staff isolates it
and takes appropriate action. On the night and weekend shifts, the operations staff responds directly
to user inquiries.

14.2.4 Network Services

Network Services. the ISI customer service group, provides a two-way communication link between
the users and consulting staff. This is accomplished by maintaining a 12-hour, 5-day on-duty staff
for prompt problem resolution and rapid information exchange. both on-line and by telephone. The
group offers introductory training in the use of both the hardware and software tools available on the
ISI systems, as well as providing documentation for new users of the ARPANET. Network Services
also assists in the formulation of user training programs for large, ARPANET-based military
experiments, for example. the U.S. Army XVIII Airborne Division Army Data Distribution System at Fort
Bragg, North Carolina, and the C3/ARPANET Experiment at Strategic Air Command Headquarters at
Offutt Air Force Base. Nebraska. Appropriate documentation is constantly being generated and
distributed to individual users, as well as to remote user-group liaison personnel; this documentation
ranges from simple, novice-level explanations to more technical information suitable for experienced
users. In accordance with IPTO guidelines, the customer-service group provides regular accounting
data to DARPA.

14.3 PROGRESS

The past year has been a very successful one for the Computer Center. Average uptimes were 99 +
percent, and several major transactions have occurred without great difficulty. We saw for the first

-j

PROGRESS 121

time the results of the modernization effort undertaken in 1982, made major advances in our local
networks implementations, and successfully transitioned to the TCP/IP suite of network protocols.

14.3.1 Environmental Changes

In late 1982 we completed a major facility renovation that included new wiring, conditioned power,

air conditioning, and fire protection equipment. During 1983 we saw a substantial decrease in
crashes due to environmental conditions. During FY'82 there were 107 environment-related crashes
(power fluctuation, power failure, air conditioning failure). During FY'83 there were only 20
environment-related crashes, a decrease of 81 percent. In the last seven months of operation there
were no environmental crashes.

14.3.2 Hardware Additions

Over the past two years the ISI Computer Center has undergone a major change in direction.
Previously dominated by DEC PDP-10 computers, the facility was a relatively simple support
environment consisting of a uniform collection of hardware and software. The current collection of
equipment reflects the New Computing Environment project plan of moving towards professional
workstations and rear-end servers. The new collection of systems is a substantially more complex
support problem involving two local networks, nine different processors, and seven operating
systems:

Quantity: Manufacturer: Model: Operating System:
6 DEC PDP-10 TOPS-20
1 DEC VAX 11/780 VMS
1 DEC VAX 11/780 UNIX
7 DEC VAX 11/750 UNIX
3 DEC VAX 11/750 VMS
8 XEROX 8010 STAR
3 XEROX 1100 INTERLISP BASED
3 3-RIVERS PERO UNIX
1 SYMBOLICS LM-2 CLISP BASED
5 SYMBOLICS 3600 OLISP BASED

12 IBM PC MS-DOS

In addition, two more DEC PDP-10s were supported by the ISI staff at remote sites (Gunter AFB and
NOSC). The current local hardware configuration is shown in Figure 14-1, and the configuration of
the hardware at NOSC is shown in Figure 142.

14.3.3 System Software Enhancements

During FY'83 the major effort centered upon installation and debugging of the TOPS-20 systems for
the conversion from NCP network protocols to the new DoD standard TCP/IP suite of protocols. This
work was a joint effort of Digital Equipment Corporation, Bolt Beranek and Newman. Inc., and ISI. ISI

developed the bulk of the applications-level programs (SMTP mail, TN. FTP, etc.) and also assisted in
the debugging of the two operating system modules.

In addition, during FY'83 backup procedures were developed for SAC scheduling, preparation was
made for the ARPANET/MilNet split, the SA10 controller software was enhanced, the last TENEX

122 COMPUTER RESEARCH SUPPORT

ARPANET MILNET

IMP
Mail 103

Bridge

IMP
22 ADA

VAX

3Mb Ether

Vax Vax
111750 11/750

a.
eIMP VAAA ChaosNet 11]750 - WC

27
Vax Vax
11/750 - 11,750

Gate
79

Vax
way 11/750

Vax 'M b
11/750 Sun C 36 00

68010
IMP Vax Y - b
52 11,750 Sun E 36 00

68010

1OMb Ether

ISI Computer Facility

Figu re 14 -1: Diagram of local ISI ARPANET facility

PROGRESS 123

Classified ARPANET

TIP 35

Multi-host

PLI

TOPS2 UNIX

KL2040 PDP 11/70

1024 K Words 256 K Words
Memory Memory

(06 b; t) (16 b;t)

700 MByte Disc 200 MByte Disc

(BBN maintained)

Figure 14-2: Diagram of remote ISI ARPANET facility at NOSC

system was replaced by a KL running TOPS-20, support was added for new tape drives. RSX-20F
floppies were developed for Gunter-Adam. dial-out capability was added for the VLSI project and the
ISI business office, an accounting system was developed for the ADA-VAX. VMS 3.1 and VMS 3.2
were installed on the ADA-VAX, UNIX 4.1 was installed on the UNIX systems. and numerous bug fixes
were made on the System and user Subsystem programs.

14.4 MILITARY IMPACT

ISIs computer centers provide ARPANET cycles 24 hours a day 7 days a week to the Strategic Air
Command Naval Ocean Systems Center, and Fort Bragg In addition to supplying machine time, this
project has provided additional support in the following areas:

* Training documentation, and modifications as requested by user groups for NLS.
* Planning support and training in IS! systems software for the installation of an on-site

DEC System 2060 at Gunter Air Force Base

* Support for the production of AFM 67-1 with NLS.

124 COMPUTER RESEARCH SUPPORT

14.5 FUTURE WORK

The Computer Research Support project will continue to provide computing service to the DARPA

research community, provide and support software packages for the ARPANET community, and offer

a program of technology transfer and user edjcation through the Network Services group.

125

15. STRATEGIC C3 SYSTEM
EXPERIMENT SUPPORT

Research Staff:
Gary McGreal
Victor Ramos

15.1 INTRODUCTION

DARPA has defined an experiment in Strategic C3 systems to be conducted in cooperation with the
World Wide Military Command Control System (WWMCCS) System Engineer (WSE) and the Strategic
Air Command (SAC). The concept of the experiment is to demonstrate and evaluate the use of new
technologies (such as the ARPANET, packet radio, network security, and distributed knowledge-base
techniques) for strategic command, control, and communication. Specific goals are to

" Demonstrate and evaluate the survivability of multinode computer-communication
networks, including the ARPANET and packet radio, especially for remote access from
both airborne platforms and surface sites.

" Explore replication and reconstitution of critical knowledge bases on this network in the
face of a loss of a large number of links.

" Demonstrate and evaluate the rapid reconstitution of a network by rapid deployment of
packet radio nets to reestablish connectivity between surviving elements of the network.

" Conduct experiments and exercises to evaluate the utility of such a network on a
distributed knowledge base to support postattack C3 activities.

The DARPA experiment is defined as having three phases:

1. Phase I is planned to demonstrate air-to-surface packet radio links and gateways into the
ARPANET as a first step in evaluating the feasibility of a truly survivable strategic
network.

2. Phase II is directed toward creating a survivable message system and data bases through
multiple copies of the critical components and data across the ARPANET.

3. Phase III will address the feasibility of rapid reconstitution of a strategic network by
deployment of packet radio networks to reconnect surviving elements of the network.

15.2 PROBLEM BEING SOLVED

ISIs major portion of the above plan is to provide an initial core of necessary facilities
(ARPANET/MILNET access, host systems, various software tools, Network Services support, etc) to
allow SAC personnel to gain experience with this technology and to ensure the success of the
experiment. Specifically, SAC must have fairly broad-based experience with ARPANET-based
on-line interactive computing. Installation of modems, installation of 30 or more interactive CRT
terminals, user training, system software training and support, and on-site maintenance of equipment
are part of the continuing program.

126 STRATEGIC C3 SYSTEM EXPERIMENT SUPPORT

15.3 PROGRESS

The major activity at SAC itself during this period, outside of the normal datacom. experiment, and
Network Services support, revolved around the ARPANET/MILNET split. The SAC user community
has been growing regularly since its inception. As a result, existing resources have been strained.
An additional TAC was installed in December to support the growing user community. This summer
the entire ISlE facility was dedicated to SAC use, doubling their available computational capacity.

A SAC data communications plan, developed by ISI and proposed in November 1982, would triple
the maximum number of SAC users able to access the ARPANET/MILNET. The wiring plan was
accepted and the work will be completed in August 1983.

In addition, during this period new resources were obtained or redistributed to support the VAX van
effort (the effort is a portion of the experiment testing the mobility and reconstitutability of a partially
destroyed network). Additional ARPANET access was provided to SRI International (which was
working the Telecommunications portion of this effort and housed the vans) via 9600 bps
communications lines. A plan for reallocation of C3 terminal assets, identified for use on the VAX van
by the Headquarters Emergency Relocation Team (HERT) participants, was approved by the Chief of
Staff (Monroe W. Hatch) and the Deputy Chief of Staff for AD (James L. Crouch). ISI also supplied
three new printers for the vans.

15.4 FUTURE WORK

ISI will continue to assist DARPA in planning this program, working to satisfy the communication
and computer resource requirements of SAC headquarters. In particular, ISI will do the following:

" Continue to provide on-site maintenance support for the required equipment.
" Continue to plan and assist in implementing improved SAC connectivity to the ARPANET.
" Install and maintain terminals and communication equipment for the connection of two

Air Force bases to the ARPANET to allow participation in the experiment.

" Continue to supply programming support to users at SAC headquarters.

IS[will provide an on-site technician at SAC, who will be responsible for the identification of system
malfunctions and for primary maintenance of on-site equipment. He will be supplied with required
spare parts and will have maintenance contracts with the equipment vendors. Further support will be
available from ISI in terms of additional spare parts, systems expertise, and documentation as
necessary. The on-site maintenance technician will also be responsible for the off-site terminals at
Peterson Air Force Base, Barksdale Air Force Base, March Air Force Base, and any new locations.
The on-site technician will coordinate requests of SAC AD with SRI International and SAC (XPFC)
under the supervision of ISI management. The technician will provide training and consulting with
backup from ISI as required.

ISI will provide program planning assistance to DARPA. We will continue to investigate the data
requirements for SAC Headquarters, the HERT effort, and the ACCESS system (SAC Executive Data
Processing System). As specific research tasks are defined, ISI may choose to submit new proposals
to address one or more of these tasks.

L ____

127

16. TCP/IP IMPLEMENTATION SUPPORT

Research Staff:

Gary McGreal
Joel Goldberger
Dale Chase

Craig Rogers

16.1 PROBLEM BEING SOLVED

ISI's user base is distributed across the entire continental United States. with a few users
communicating via satellite connections to Europe and Hawaii In the near future. further expansion
is expected that will allow access to Japan and Korea This access is obtained by the connectivity of
the ARPANET, the MILNET, and the Internet These networks are accessed via the Internet Protocol
(IP) and the Transmission Control Protocol (TCP)

The Department of Defense has adopted the internet concept. and the IP and TCP protocols in
particular, as DoD-wide standards for all DoD packet networks. The DoD will be converting to this
architecture over the next several years.

The role of the TCP/IP Implementation Support project is to assist in placing these protocols into
active use in the operational ARPANET and MILNET by installing and debugging host software to
support the ISI user community.

16.2 GOALS AND APPROACH

This is a group effort involving programmers and researchers from ISI, Bolt Beranek and Newman
Inc.. Digital Equipment Corporation, UC Berkeley, SRI International. Stanford. the Massachusetts
Institute of Technology, and other institutions, The ISI TOPS-20 implementation was based on
monitor sources developed at BBN. ISI, with some assistance from Stanford and DEC. debugged the
monitor code and installed the principal services: Telnet, File Transfer, and Mail.

The UNIX kernel modifications were developed by BBN and Berkeley, ISI installed this software on
the local UNIX systems and adapted existing services to the new protocols.

A VMS implementation was adapted from the UNIX code running in the SRI-developed EUNICE

environment, which emulates UNIX operations and kernel functionality. This was installed in the ISI
VMS hosts using locally developed network drivers.

16.3 PROGRESS

In preparation for the DARPA-directed conversion from NCP to TCP, which took place on Jar uary
1, 1983, a major effort was made to convert existing network utilities and develop TCP-specific tools
on our six TOPS-20 systems and two VAX 780s running VMS and UNIX. The existing utilities included
the mail system, local line printer spooling, system monitoring, user inquiry (FINGER), TELNET, FTP,
and several database backup facilities operated for the Strategic Air Command (SAC) and Fort Bragg.

128 TOPS-20 TCP/IP SYSTEM IMPLEMENTATION

New utilities that were developed include TOP-specific status and monitoring tools and assorted
servers (time servers, name servers and the like) Both before and after the conversion we worked

closely with BBN to test and improve new releases of TOPS-20 system and application TCP code. We
worked with SRI on the VMS support. and with both BBN and Stanford on the UNIX support A

number of crippling bugs in the TOPS-20 implementation were found and corrected, and

performance was improved significantly as a result of this collaboration We also served as a
distributor of a number of TCP utilities to the rest of the DARPA community. making our TOPS-20

sources available to any interested party.

We also imported and adapted the Berkeley 4.1a UNIX implementation of TCP/IP and the MIT
Remote-Virtual-Disk protocol to provide a usable environment on seven VAX 750s Most of this

development was done by the New Computing Environment prolect. but support was provided by the
programmers working directly on TCP/IP as well. Another task completed in support of this project

was the installation of a DEC PDP-11/23 ARPANET/Ethernet gateway, which provides network
connectivity for these VAXes. Several utilities developed to monitor this gateway have proved useful
in identifying and diagnosing some of its problems.

In an effort to identify and correct network response problems affecting SAC. Fort Bragg. and IPTO

users, we have again collaborated with BBN to install an extensive measurement package in our
TOPS-20 systems. The results of this measurement have already been used to direct software

improvements. We expect further results and additional improvements in the months ahead.

16.4 IMPACT

ISI currently supports eight DEC TOPS-20 systems connected to the ARPANET/MILNET. six at the
Marina del Rey Center, one at the Naval Ocean Systems Center (NOSC) in San Diego and one at

Gunter Air Force Station in Alabama. These systems support approximately 2,500 government.
military, and subcontractor users. TCP/IP protocols are used to connect these users to the IS]

systems.

16.5 FUTURE WORK

We will continue to work with BBN to identify the bottlenecks that are causing poor network

response on the TOPS-20 machines, In addition, problems in the TOPS-20 TCP code that are

causing both system crashes and throughput degradation continue to be identified and corrected.
Effort is also continuing to improve the reliability of the DEC PDP-1 1 /23 Gateway. As we add hosts
that use TCP/IP to our Ethernet, we have uncovered problems in both the TOPS-20 and VAX
implementations. We continue to correct these problems as they appear. The hosts include

IBM-PCs, VAXes. SUN workstations, and eventually Xerox Dandelons. These efforts are drawing on
resources from both systems staff and the staff of the New Computing Environment project. Our

desire is to provide a unified environment that supports all of the different processors at ISI.

We are also investigating alternate gateway implementations that will allow us greater control over

this resource than we are allowed using the implementation supplied by BBN. These alternatives
include implementations done by Dave Clark at MIT and Dave Mills at Linkabit.

We are in the process of connecting our TOPS-20 systems directly to the Ethernet using the

Massbus Ethernet Interface System (MEIS) developed at Stanford University. This is presently

FUTURE WORK 129

connected to the 3MBit Ethernet, but Stanford is planning to convert it to the 10MBit Ethernet by the
end of this year. To achieve this connection, changes are required in both the hardware (as it came
from Stanford) and in the TOPS-20 software Even on the 3MBit Ethernet we will be able to use this
hardware in a number of ways, since we have other processors (VAXes and SUN workstations) also
constrained to use this network.

We are anxiously awaiting release of the DEC TCP JSYS interface, which promises to provide a
much cleaner interface to the TCP/IP facility than the current BBN implementation. Once this is
delivered, considerable effort will be required to convert the existing utilities to make use of it.

ISI will carry out support and development of TCP/IP protocol implementations on the computer
systems at ISI as required. Specifically this will include work on throughput problems, coordination
with BBN, reliability enhancements, work on the local area net system, support of the UNIX and VMS
systems, and work on the TOPS-20 JSYS interface.

131

17. EXPORTABLE WORKSTATION SYSTEMS

Research Staff:
Gary McGreal
Joel Goldberger
Jim Koda
Dale Russell
Tom Wisniewski

17.1 PROBLEM BEING SOLVED

Portability and survivable communications are key concerns in the command and control
environment. To date, portability of data processing equipment has been complicated by the size and
power requirements of even the smallest minicomputer. With the advent of single-chip
microprocessors (such as the Motorola M6801 0), it is possible to develop command workstations that
are readily portable and can be installed in vans or airborne command stations.

Over the next few years, workstations in the office, in the research community, and in the military
will generally be used as part of an interconnected system that will include access to local and
national networks, printers, file servers, database hosts, and large timesharing computers supplying
special-purpose or volume processing (LISP cycles, fast floating point, peripheral array processors,
etc.).

For survivability purposes, it is important that databases (logistics data, weather data, etc) be
redundant and distributed. Local area networks connected to long-haul networks such as DDN (or
packet radio networks) will provide communication connectivity to these distributed resources

The exportable workstation systems will provide a model for this environment and serve as a test
site for new hardware and software developed in DARPA-IPTO programs. The Workstation project.
by installing these Sun Microsystems, will support IPTO administrative functions. In addition, ihese
systems will serve as a proving ground for software developed by ISI and other DARPA-IPTO
contractors.

17.2 GOALS AND APPROACH

The ISI Exportable Workstation Systems project has proposed a testbed workstation for installation
at the DARPA-IPTO office in Arlington. This workstation, the SMI SUN (a Motorola 68010-based
system with graphics hardware and display), runs UNIX-based software. ISI will install fourteen
workstations, which will be connected to a local Ethernet and a VAX file server, TOPS-20 systems will
be maintained at ISI in Marina del Rey as remote servers and database hosts. We expect workstations
to significantly augment existing technologies and services.

This plan has the following potential advantages:

1. Avoidance of network delays in character transmission.
2. Avoidance of occasional high loads due to overloading or some other problem on the

timeshared TOPS-20 hosts.

L PREVIOUS PAGE

IS BLANKC

132 EXPORTABLE WORKSTATION SYSTEMS

3 Ability to use either workstation or remote host software tools.

4. Use of a workstation as an agent between the user and redundant databases on multiple
hosts.

5 Ability to use high-resolution graphics on the local display.

6 Use of the workstation for security; the workstation could locally maintain keys for
encrypted data stored in hosts. The keys need never appear in the host or the Internet.

17.3 PROGRESS

This project was initiated late in the fiscal year, but some progress has been made on the prototype
hardware and software. Two prototype systems have been installed, one at DARPA-IPTO and one at
ISI. UNIX is operational and the systems are on local Ethernets accessing the Internet via BBN (Bolt
Beranek and Newman Inc.) gateways. Primitive administrative programs are available for mail and
editing. More sophisticated software is being developed and is on order.

17.4 IMPACT

This project serves as an example and existence proof of command and control, office automation.
and communications technology, all of which are critical to the military community. It will
demonstrate the viability of communications in an operating Internet environment, the first step
towards mobile and distributed command and control systems. It will demonstrate the viability of
using redundant databases for backing up applications in the face of partitioned networks and
inoperable systems. The system will also show some advantages of using local area networks over
using low-bandwidth access to interactive timesharing systems,

17.5 FUTURE WORK

The operating system will be developed, using SMI's UNIX offering as a base and adding
functionality and services as required. When possible, we plan to use existing software as the basis
for new tools. In adapting existing software and creating new software, we offer a clean structure for
building tools, which minimizes cost and provides building blocks for future enhancements.

17.5.1 Redundant Mail Cache

A fully automatic and distributed message system is a very complex and important research problem
with broad implications for the military community An ideal solution will take a good deal of time,
research, and development. In order to lower costs and get the system operational as soon as
possible, we propose a more modest engineering solution. Our plan is to build a system in which a
single host is responsible for maintaining all redundant copies of a particular file; whenever the
master copy is updated, the redundancy manager in the master copy's host is responsible for
updating all "registered" copies.

In such a system, redundancy guarantees that a recent consistent version of any file is available, but
updates are not distributed until the master host for a particular database is up This is completely
adequate for most program libraries; in the case of mail, it means that a user call acc(ess all messages
that have arrived at his master mailbox even i' the corresponding host is down,

FUTURE WORK 133

A DEC VAX will be the master mailbox host. Mail received by the VAX will be "tagged" as received
and sent on to the TOPS-20 redundant mailbox. New mail that has been sent directly to the TOPS-20
host will be forwarded to the VAX for processing by the master mailbox. Changes to the mailboxes on
either host will not be reflected in the corresponding host's mailbox. In general, the user will
manipulate, read, and delete messages from the VAX host. The TOPS-20 mailbox will remain an
archive cache of all messages received in the past unless the user chooses to handle them in some
special way.

17.5.2 Mail Services

The main component of the mail support on the SMI systems will be a mail preparation program
similar to those existing on TOPS-20. We will attempt to mimic the user interface of Hermes, since
that system seems to be in widest use on the TOPS-20 systems. As a starting point we will use the
"C" based mail handler MH. Substantial changes must be carried out on the user interface, and we
plan to add the minimal functions found in even simple TOPS-20 mail handlers such as MSG. We do
not plan to add the full range of capabilities found in mail handling "systems" such as Hermes or MM
In general. we feel that the editors. mail handlers, and applications-level utilities will eventually be
replaced by programs that take full advantage of the workstation's bit-map display and "mouse" I/O
device. Our short-term goal is to provide services commensurate with those already available from
TOPS-20 or UNIX. not to augment or heavily invest in programs based on antiquated line-at-a-tme
user interfaces

17.5.3 Archive and Backup System

A number of problems are inherent in operating a local network in an office environment. On one
hand. it is desirable to avoid the noise, high support costs, need for an "operator," and space used by
the traditional tape drive and dump procedures: on the other hand, the requirement for data integrity
and systems backup remains the same.

The logical solution is to centralize and remote this capability. In the future, this will probably
account for a good deal of network FTP traffic. In this area the IPTO system will be breaking new
ground While some research and even implementations exist (work at Bell Labs. CCA Datacomputer.
etc.), a truly tapeless (locally) archive and backup system has not been used operationally.

The archival system will be tied into the TOPS-20 systems at ISI, which will make it possible to share
the operator time (and expense) required for tape mounts, etc.. across a large existing facility, and
possibly over several other local net environments In addition, existing TOPS-20 software will be
used for the bulk of the end user transactions, avoiding a very large development cost.

Each user will have an archive directory on the TOPS-20 system. A series of programs and
commands will be written on the UNIX side to move files across the net and to evoke the appropriate
TOPS-20 command A background process will observe when files are retrieved on the TOPS-20
side and FTP them across the net to their appropriate UNIX directories For example. if the user
wants to archive a file on the UNIX system, he will type the following command-

$ archive filenm

The UNIX archive program will open a connection to TOPS-20 and copy the UNIX file
/usr/user/filenm into the TOPS-20 file <IPTO-NET ARCHIVE USER>filenm .1, Further, the program
will initiate an @archive filenm 1 command to TOPS-20. If a user wants to examine his archive file
directory he can give a command such as

$ dir m"

134 EXPORTABLE WORKSTATION SYSTEMS

The UNIX-based program will then print out the current list of archived files that start with the letter
m. ..

To support backup of the file system, programs will be required to do disk-to-disk incremental and

full dumps. Given that Berkeley will be writing drivers for the RUA-81 and RUA-60 disk drives (the
new de facto DEC standard), this effort should be minimal.

135

18. NEW COMPUTING ENVIRONMENT

Research Staff:
Gary McGreal
Joel Goldberger

Michael Butler
Dale Chase
Jim Koda
Craig Rogers

18.1 PROBLEM BEING SOLVED

The New Computing Environment (NCE) project's goal is to adapt developing computer
technologies to serve the research and military user communities. The resulting model computing

environment will serve four purposes; it will

1. provide a very large improvement in languages. system support, and additional
computing cycles to the ongoing ISI research effort;

2. serve as a testbed and eventual existence proof for the implemented technology;

3. serve as a proving ground for local computer environments targeted for DARPA and the
military community, as well as a device for investigating new research ideas that will
eventually be adapted by those communities; and

4. allow for experimentation and realization of command and control requirements for an
environment that can exist in mobile command centers, given the small size, portability,
and local computing capability of personal computers.

18.2 BACKGROUND

For convenience in formulating a generic model of a computing environment, computational activity

can be split into two major types: interactive computing and CPU-bound computing Our model
assumes that the user will have at least the computing capacity in his personal computer (PC) to allow
him to do all interactive computing locally. If the PC we acquire is fast enough, it ma be able to do
CPU-bound computing as well. If the frontend PC is not fast enough, we will need more powerful
rear-end servers. All current scenarios for a personal computing environment include some
combination of PCs and servers.

Generally, interactive computing is considered to include editing. mail handling administrative
tasks (interactive calculations, spread sheets, calendar maintenance). Oirectory maintenance,
conferencing, small program generation/debugging, and system status checking CPU-bound
computing includes LISP programming, large program compiles, large program execution, large file
transfer, sorts, searching, and database management.

The guiding principle in the design of this environment is full use of current hardware technology as
it is represented by personal comnuters, bit-mapped displays, and pointing devices (mice). A

common failure in the use of new hardware technology is to drag along the preludices and limitations
of operating system software that was suitable for an earlier hardware base Current applications
software rarely takes advantage of the now commonplace features of smart terminals (blinking

characters, highlighting, reverse video, etc.). We consider an environment that further perpetuates
such a teletype-oriented user interface onto bit-mapped displays to be an unacceptable waste

136 NEW COMPUTING ENVIRONMENT

Human engineering is an area that has been frequently overlooked in computer system
implementations. Historically. operating systems have evolved from a level of low
complexity/functionality to high complexity/functionality, not by following a coordinated plan, but
rather as the result of the programming requirements of individual users. Functionality has been
tacked on, rather than integrated into systems.

Computers are a tool to aid in the solving of problems. Time wasted in dealing with a poorly
implemented system detracts from that system's potential benefits. The hidden costs of poor human
engineering include time wasted learning non-mnemonic commands, time wasted deciphering bad
documentation, time spent tracking down errors, work lost through system malfunction or inadvertent
deletion, time spent training new users, and the cost of staff who should use the computers. but who
do not use them because of difficulties resulting from bad design.

18.3 GOALS AND APPROACH

Current hardware technology as it is represented by programmer workstations includes bit-mapped
displays, pointing devices, relatively high-speed local processing, and a local area network with
specialized servers. Servers can be used for high-resolution printing, optical character readers, file
servers, plotters, communications, or special-purpose processing (LISP machines).

Users who are already trained on one computer system are frequently frustrated by the design flaws
of another. To be successful, NCE must offer a large, tangible improvement over existing systems
(particularly TOPS-20) and at the same time minimize retraining of users familiar with other
environments. NCE must perform the following functions in support of its users:

" Word processing support
" Network connectivity
" Electronic mail services
" Simple programming capability
" Large program support
" Graphics services
" Administrative support software
" File server and backup support
" System support

Specifically, then, our goal is to create a workstation environment that will allow research and
administrative work at ISI to be carried out on a network of personal computers. After our general
NCE environment matures, a major goal of exporting this knowledge and technology to a military
setting will be attempted. At this stage in the NCE development, we have the following goals and
evaluation criteria:

1. We plan to use the current hardware technology to maintain access to various servers
and to take advantage of features of the new "smart" terminals.

2. We plan to make full use of recent developments in the understanding of human
engineering, and we expect to save significant amounts of time that would ordinarily be
wasted on old-style non-integrated functionality, haphazard user training, and
non-rigorous system implementations.

3. We expect to offer a total system with tangible improvements over TOPS-20 and similar
operating systems, so that the NCE will be the system of choice for most users.

4. We expect to provide a non-Xerox file server for the NCE.

PROGRESS 137

18.4 PROGRESS

To date, a variety of possible hardware bases have been analyzed to determine their suitability to
our evaluation criteria. Processors that have been reviewed include VAX 11/730s. Perqs Apollos
Wicats, Suns, Xerox 1100s (Dolphins and Dandelions). and Symbolics 3600s.

One strong candidate as the processor most suitable for our needs is the Xerox Dandelion

workstation, running with the Mesa programming environment and the Star operating system
software. This processor offers a combination of high speed, low cost, sophisticated software, and
integrated printing peripherals not as easily obtained from other vendors' products.

Moving the entire ISI community to this product presents several problems. some of which may not
be resolvable. However, a number of critical basic functions are fully implemented in the Xerox
Dandelion-based environment:

" Word processing support. This requirement is fully met by the Dandelion/Star system.
The bit-mapped display and editor supports a high-resolution, multiple-font environment
with an extensive graphics capability. The command interface makes good use of the
hardware, including extensive use of the pointing device (mouse).

" Programming capability. We have negotiated access to both Interlisp and MESA,
sophisticated programming environments that meet the needs of most of the ISI research
staff.

* Graphics services. There is full support for graphics, windowing, multiple fonts, and
access to the mouse. The Xerox Raven printer provides high-resolution laser output.

The decision to base the local area net on a 10MB Ethernet has provided a firm basis for achieving
the requirements of the NCE system. The local network is accessible to UNIX-based VAX computers
workstations, and IBM PCs. A diskless UNIX system has been implemented, using Berkeley 4.1a UNIX
running on VAX 11/750s with a Remote Virtual Disk protocol developed at MIT. Several projects
require access to highly portable software, These UNIX systems support both "C" and "MAINSAIL,"
and they will eventually be accessible as backend servers. A number of projects are using these
systems as single-user Interlisp workstations,

18.5 IMPACT

Portability and survivable communications are key concerns in the command and control
environment. To date, portability of data processing equipment has been complicated by the size and
power requirements of even the smallest minicomputer, With the advent of single-chip
microprocessors, it is possible to develop command workstations that are readily portable and can be
installed in vans or airborne command stations.

For survivability purposes, it is important that databases (logistics data, weather data. etc.) be
redundant and distributed. Local area networks connected to long-haul networks such as DDN (or
packet radio networks) will provide this connectivity.

In addition, local area nets and administrative workstations will gain widespread use in the military
over the next few years. A number of major vendors are adapting Ethernet as the basis of their local
area network technology. The NCE project will enable these systems to communicate with DoD
long-haul networks via the required TCP/IP protocols.

,A.

138 NEW COMPUTING ENVIRONMENT

18.6 FUTURE WORK

18.6.1 Electronic Mail

The most important work to be done at this time (assuming that the Xerox Dandelion is our final
choice) is integrating TCP/IP protocols into the XNS (Xerox Network System) environment It would
be a mistake to replace all of the existing XNS protocols with TCP/IP, as this would disrupt the
integrity of the existing software. We will want TCP/IP to run in individual workstations in much the
same way that Xerox has both XNS and PUP (PARC Universal Packet) coresident: that is, we will build
a set of tools that allow the workstations to communicate directly with IP hosts rather than having to
go through a translating gateway. This will allow access to DoD Internet hosts via FTP and Telnet. In
addition, a translating gateway may be built.

Since one of our goals is to provide file service on a non-Xerox processor in order to provide a more
robust archive mechanism, we will probably develop a system which will allow this same processor to
handle some subset (if not all) of the translation duties. We will obviously need such an intermediary
to handle mail from the DoD Internet, since our only viable option with mail on the Dandelion is to use
the Star mail system. We may provide a Mesa environment interface to the Star mail, but that has no
impact on the problem. We will also require this processor to allow access to the Star file server from
the Internet. The TCP/IP module will also be used by the Internet project for the development of
Multimedia mail and for general protocol development. We will make inquiries of ACC and Interlan
regarding their implementations of XNS protocols on the VAX, and we await details on the current
Xerox VAX/XNS effort. We have always been wary of using protocol packages for which we could
not acquire the sources, and this would apply in this case as well.

In order to provide mail service, we will need to modify Star mail service to allow simplified
addressing of ARPANET mail. That is. we would like to be able to say Postel@ISIF, rather than to
specify the address in some other way to direct it to our mail gateway. This would render a mail
system rather like the present Hardy/Grapevine system, in use at Xerox, which allows addressing to
either ARPANET or Xerox Internet recipients in the style of the appropriate network. Since the easiest
interface into the Star mail systern is at the user level, we would provide either a Xerox 8000. or more
likely a VAX. the ability to poll the mail-server at regular intervals and accept mail bound for
ARPANET recipients. The server would then retransmit the mail using the DoD SMTP protocol over
the DoD Internet using TCP/IP. Incoming mail would be addressed to
User:Domain:Organization@Mail-Gateway, in the same way that mail to people on the Grapevine
network at Xerox is presently addressed to User.Registry@PARC-MAXC. The return address would

be filled in by the mail gateway as mail left the Star network.

18.6.2 Hardcopy Output

Several text formatting applications presently available on our DEC 20s are unlikely to migrate to
Dandelions, and we would like to be able to make use of the new line of printers available for the Star
network, all of which use the InterPress format. To this end we need to write conversion tools or
modify our existing applications to produce InterPress masters directly on the DEC 20s. These
InterPress masters would then be transmitted to the Star printers via our gateway, which would have
to be educated to talk to the print server via XNS protocols. We presently have a similar arrangement
in place to print files on a Xerox Penguin.

FLTURE WORK 139

18.6 3 Home Terminal Access

The researchers at ISI are accustomed to being able to access our systems from home. and they are
reloctant to sacrifice this facility. We plan to provide for this capability, although the precise mode of
connectivity has not yet been decided on it could be either simple TTY-style interaction, as is
provided by the present Star ITS service, or an implementation of the XNS protocols that are used
over the phone

18.6.4 Remoting the Display/Keyboard from the Processor

Since our offices are not adequately air-conditioned and since the Dandelion in its present form is
very noisy, we would like to be able to have the display/keyboard remoted from the processor. To
allow this, we must acquire sufficient technical documentation to allow us to modify the hardware of
the Dandelion We will pursue negotiations with Xerox to obtain the required clocumentation and will
carry out the necessary hardware development.

18.6.5 Access to LISP Engines

We presently have three Xerox 1 lOOs, two Symbolics LM-2s. and five Symbolics 3600s, all of which
have rather elaborate window packages. Because we will never be be able to provide a machine of
this power to every researcher who desires one, we will have to use them on a sequentially
timeshared basis. It is our desire to make these high-powered LISP engines available via the
workstations in people's offices. This requires access at a low level to the window packages on each
of these backend machines. and a facility to replicate the windowing functions on the Dandelion. The
LISP environment on the Dandelion provides sufficient access to these low-level windowing
primitives.

18.6.6 Porting of the Final Product

Our eventual goal is to create and maintain a workstation environment that allows the research and
administrative programming at ISI to be carried out on the personal computers When this occurs, the
system and its programs will be available for porting to military environments. It will arrive as a
well-tested and reliable environment.

PUBLICATIONS 141

19. PUBLICATIONS

Books, Chapters, and Journal Articles

1. Balzer, R. M.. Don Cohen, M. S. Feather, N. M. Goldman, W R. Swartout, and D. S. Wile,
"Operational specification as the basis for specification validation." in D. Ferrari, M. Bolognani,
and J. Goguen (eds.), Theory and Practice of Software Technology. North-Holland, 1983.

2. Cohen. Don, W. R. Swartout. and R. M. Balzer, "Using symbolic execution to characterize
behavior," ACM Sigsoft Software Engineering Notes 7, (5), December 1982, 25-32. Working
papers from the ACM SIGSOFT Rapid Prototyping Workshop.

3. Cohen, Danny, and V. Tyree, "Quality control from the silicon broker's perspective," VLSI
Design 3, (4), July/August 1982, 24-30.

4. Cole, E. R., "Packet voice: When it makes sense," Speech Technology I. (3),
September/October 1982, 52-61.

5. Feather, M. S., "Program specifications applied to a text-formatter." IEEE Transactions on
Software Engineering SE-8, (5), September 1982. 490-498.

6. Lipkis, T., "Descriptive mapping for explanation production [abstract]," SIGART Newsletter, (85),
June 1983.

7. Mann, W. C., "Systemic encounters with computation," Network: News, Views and Reviews 7,
May 1983, 27-33.

8. Mostow, D. J., "Learning by being told. Machine transformation of advice into a heuristic search
procedure," in J. G. Carbonell, R. S Michalski, and T. M. Mitchell (eds.), Machine Learning,
Tioga, Palo Alto, California, 1982.

9. Sondheimer, N. K., and N. Relies, "Human factors and user assistance in interactive computing
systems: An introduction," IEEE Transactions on Systems, Man, and Cybernetics SMC-12, (2),
1982,102-107.

10. " -idheimer, N. K. (ed.), Tutorial on Natural Language Interfaces, Association for Computational
,; ' guistics, 1983.

11. Stefik, M., J. Aikins, R. M. Balzer, J. Benoit, L. Birnbaum, F. Hayes-Roth, and E. Sacerdoti.
"Basic concepts for building expert systems," in F. Hayes-Roth, D. Waterman, and D. Lenat
(eds.), Building Expert Systems, Addison-Wesley, 1983.

12. Stefik, M., J. Aikins, R. M. Balzer, J. Benoit, L. Birnbaum, F. Hayes-Roth. and E. Sacerdoti,
"Architecture of Expert Systems," in F. Hayes-Roth, D. Waterman. and D. Lenat (eds.). Building
Expert Systems, Addison-Wesley, 1983.

13. Sunshine, C., "Guest editorial: Protocol specification, testing. and verification," Computer
Networks 6, (6), December 1982, 375-376.

14. Swartout, W. R., and R. M. Balzer, "On the inevitable intertwining of specification and
implementation," Communications of the ACM 25, (7), July 1982, 438-440.

15. Weischedel, R. M., and N. K. Sondheimer, "Meta-rules as a basis for processing ill-formed
input," American Journal of Computational Linguistics 9, (3-4), 1983.

L PREVIOUS PAGE

IS BLANK

142 PUBLICATIONS

Refereed Conference Proceedings and Papers

1 Balzer, R. M., D. Dyer, M. Fehling, and S. Saunders, "Specification-based computing
environments," in Proceedings of the Eighth International Conference on Very Large Data
Bases, IEEE, Mexico City, September 1982.

2 Bates, R., D. Dyer, and J. A. G. M. Koomen, "Implementation of Interlisp on the VAX," in
Conference Record of the 1982 Symposium on LISP and Functional Programming, ACM,
Pittsburgh, August 1982.

3. Bisbey. R., I1. D. Hollingworth, and B Britt. "A network graphics system for command and
control," in Proceedings of the Symposium on Interoperability of Automated Data Systems,
North American Treaty Organization, The Hague, Netherlands, 1982.

4. Casner, S. L., Danny Cohen, and E. R. Cole, "Issues in satellite packet video communication," in
International Conference on Communications (ICC'83), pp. 34-38, IEEE, Boston, June 1983.

5. Cohen, Danny, "The impact of VLSI on peripheral array processors," in Proceedings of the
Conference on Peripheral Array Processors, Simulation Councils, San Diego, California, October
1982. Simulation Series, Vol. 11, No. 2, pp. 33-38.

6. Cohen, Danny, and L. Johnsson, "A formal derivation of array implementation of FFT
algorithms," in Proceedings of the USC Workshop on VLSI and Modern Signal Processing,
pp. 53-63. USC, September 1982. Also available as California Institute of Technology Computer
Science report 5043:TM:82.

7. Cohen, Danny, and L. Johnsson, "The impact of VLSI on signal processing," in Proceedings of
the USC Workshop on VLSI and Modern Signal Processing, pp. 153-156, USC. September 1982.

8. Cohen, Danny, and L. Johnsson, "Algebraic description of array implementation of FFT
algorithms," in Proceedings of the 20th Annual Allerton Conference on Communication, Control.
and Computing, pp. 126-134. University of Illinois at Urbana-Champaign, October 1982.

9. Cohen, Danny. and J. B. Postel, "Gateways bridges and tunnels in computer mail," in Local
Networks. Strategy and Systems. Proceedings of Localnet '83, pp. 109-123, London Online, Inc..
London, March 1983. Also appears in Local Networks. D;strbuted Office and Factory Systems.
Proceedings of Localnet '83. pp. 385-400. New York, September 1983.

10. Cuykendall, R.. A. Domic. W. H. Joyner, S. C. Johnson, S Kelem. D. McBride. D. J. Mostow, J. E.
Savage, and G. Saucier. "Design synthesis and measurement." in Workshop Report: VLSI and
Software Engineering Workshop, pp. 6-9, IEEE Computer Society Press, Port Chester. New York.
October 1982.

11. Kaczmarek, T., W. Mark, and D. Wilczynski, "The CUE project," in Proceedings of SoftFair, June
1983.

12. Lam, M., and D. J. Mostow, "A transformational model of VLSI systolic design," in IF/P Sixth
International Symposium on Computer Hardware Description Languages and Their Applications,
IFIP, Carnegie-Mellon University, May 1983.

13. Mann, W. C., "Anatomy of a Systemic Choice," in Proceedings of the Ninth International
Conference on Computational Linguistics, COLING, Prague, July 1982.

PUBLICATIONS 143

14 Mann W C., "Multiparagraph text generation." in W, R. Swariout (ed.), Workshop on Automatea
Explanat c' Proouction, ACM. 1983.

15 Mann. W C "A tutorial on text generation," in Conference Proceedings. Association for
Computational Linguistics, Santa Monica, California, January 1983. Oral presentation

16 Mark. W . "Natural-language help in the Consul system." in H. L. Morgan (ed.). AFIPS
Conference Proceedings, pp. 475-479. National Computer Conference, June 1982.

17, Mostow. D. J . "Operationalizing advice: A problem-solving model," in Proceedings of the
International Macnine Learning Workshop, University of Illinois, June 1983.

18 Mostow. D J., and R M. Balzer. "A program-transformation approach to VLSI design." in
Proceeolngs of the 1982 Workshop on Software Engineering and VLSI, IEEE. 1983.

19 Mostow D J., "A decision-based framework for understanding hardware compilers." in
Proceecongs of the 1982 Workshop on Software Engineering and VLSI, IEEE, 1983.

20 Postel, J B. C. Sunshine. and Danny Cohen, "Recent developments in the DARPA Internet
program." in Pathways to the Information Society. Proceedings of the Sixth International
Conference on Computer Communicatior, pp, 975-980, ICCC. London. September 1982.

21 Sunshine. C, (ed.). Proceedings of the Second International Workshop on Protocol Specification
Testing and Verification, North-Holland. 1982.

22. Swartout. W. R , "Gist English generator," in Proceedings of the National Conference on
Artifica, !ntelhgence, pp 404-407. AAAI, August 1982.

23 Swartout, W. R.. "The Gist Behavior Explainer." in Proceeclngs of the National Conference on
Artificial intellgence. AAAI, 1983. Also available as USC/Information Sciences, RS-83-3, July
1983.

24 Weischedel. R. M.. and N. K Sondheimer. "An improved heuristic for ellipsis processing," in
Proceedings of the 20th Annual Meeting of the Association for Computational Linguistics.
pp. 85-88 Association for Computational Linguistics. Toronto, Ontario. June 1982.

Refereed Technical Reports

1 Hollingworth. D.. C2 Graphics Editor User's Manual, USC/Information Sciences Institute.
TM-83-24, 1983.

2 LaCoss. J., Large Screen Termrna Project. USCInformation Sciences Institute. Hardware
Development Lab Report. August 1982.

3 LaCoss. J .KVV11-XX Un,bus C/oc Moculie. USC/Information Sciences Institute Haraware
Development Lab Report, August 1982

4 LaCoss. J., and R Parker, Faxie Interface Unit, USC/Informatioi Sciences Institute Hardware
Development Lab Report, January 1983.

5 LaCoss. J.. Standard Power Supoly. USC/Information Sciences Institute Hardware Development
Lab Report, January 1983.

6 Mann. W C.. The Anatomy of a Systemic Choice. USC/Information Sciences Institute.
RR-82-104, October 1982. To appear in Discourse Processes.

144 PUBLICATIONS

7. Mann, W. C., and C. M. I. M. Matthiessen, Two Discourse Generators and A Grammar and a

Lexicon for a Text-Production System, USC/Information Sciences Institute. RR-82-102,

September 1982.

8. Mann, W. C., An Overview of the Penman Text Generation System. USC/Information Sciences
Institute, RR-83-114, 1983.

9. Mann, W. C., and C. M. I. M. Matthiessen, Nigel: A Systemic Grammar for Text Generation,

USC/Information Sciences Institute, RR-83-105, February 1983. The three papers in this report

will also appear in a forthcoming volume of the Advances in Discourse Processes series,
R. Freedle (ed.): Systemic Perspectives on Discourse: Selected Theoretical Papers from the

Ninth International Systemic Workshop, to be published by Ablex.

10. Mann, W. C., An Overview of the Nigel Text Generation Grammar, USC/Information Sciences

Institute, RR-83--113, April 1983.

11. Merritt, I. H., and R. Parker. Switched Telephone Network Interface Card. USC/Information

Sciences Institute, Hardware Development Lab Report, March 1983.

12. Merritt, I. H., Providing Telephone Line Access to a Packet Voice Network. USC/Information

Sciences Institute, RR-83-107. February 1983.

13. Mockapetris, P., Communication Environments for Local Networks, USC/Information Sciences

Institute. RR-82-103. December 1982.

14. Parker, R., VLSI Canary Tester, USC/Information Sciences Institute. Hardware Development Lab
Report, July 1982.

15. Shiffman, R.. RS-170 Composite Sync Generator, Power Supply, Hardware Development Lab
Report, July 1982.

16. Sunshine. C.. and D. Smallberg. Automated Protocol Verifhcation. USC/Information Sciences
Institute, RR-83-1 10, October 1982.

17. Wile, D, S., Forma! Developments: Formal Explanations of Imptementations, USC/Information
Sciences Institute. RR-82-99. August 1982.

Informal Project Notes

1. Clements. R.. "Who Talks ICMP, Too? - Survey of 18 February 1983." USC/Information Sciences

Institute, RFC 844. February 1983.

2. Postel. J. B., "Simple Mail Transport Protocol," USC/Information Sciences Institute, RFC 821.

August 1982.

3. Postel, J. B., "Request for Comments on Requests for Comments," USC/Information Sciences
Institute, RFC 825, November 1982.

4. Postel, J. B., "The Remote Telnet User Telnet Service," USC/Information Sciences Institute,

RFC 818, November 1982.

5. Postel, J. B., and J. Vernon, "Requests for Comments Summary - Notes 600-699,"

USC/Information Sciences Institute, RFC 699, November 1982.

6, Postel. J. B.. and J. Vernon. "Requests for Comments Summary - Notes 700-799."

USC/Information Sciences Institute, RFC 800. November 1982.

PUBLICATIONS 145

7. Postel, J. B., "Assigned Numbers." USC/Information Sciences Institute, RFC 820, January 1983.

8. Postel, J. B., "Official Protocols," USC/Information Sciences Institute, RFC 840, April 1983.

9. Postel, J. B., and J. Reynolds, "Telnet Protocol Specification." USC/Information Sciences
Institute, RFC 854, May 1983.

10. Postel, J. B., and J. Reynolds, "Telnet Option Specifications." USC/Information Sciences
Institute, RFC 855, May 1983.

11. Postel, J. B., and J. Reynolds, "Telnet Binary Transmission." USC/Information Sciences
Institute, RFC 856, May 1983.

12. Postel, J. B., and J. Reynolds, "Telnet Echo Option." USC/Information Sciences Institute, RFC

857, May 1983.

13. Postel, J. B., and J. Reynolds, "Telnet Suppress Go Ahead Option," USC/Information Sciences
Institute, RFC 858, May 1983.

14. Postel, J. B., and J. Reynolds, "Telnet Status Option," USC/Information Sciences Institute. RFC
859, May 1983.

15. Postel. J B., and J. Reynolds, "Telnet Timing Mark Option." USC/Information Sciences Institute.
RFC 860, May 1983.

16. Postel. J. B., and J. Reynolds, "Telnet Extended Options - List Option." USC/Information
Sciences Institute, RFC 861, May 1983.

17, Postel. J. B.. "Echo Protocol," USC/Information Sciences Institute. RFC 862. May 1983.

18, Postel. J. B.. "Discard Protocol," USC/Information Sciences Institute. RFC 863. May 1983.

19, Postel. J. B., "Character Generator Protocol," USC/Information Sciences Institule. RFC 864.
May 1983.

20. Postel, J. B., "Quote of the Day Protocol." USC/information Sciences Institute. RFC 865. May
1983.

21. Postel, J. B., "Active Users," USC/Information Sciences Institute. RFC 866, May 1983

22. Postel. J. B., "Daytime Protocol." USC/Information Sciences Institute. RFC 867 May 1983

23. Postel, J. B.. and K. Harrenstien, "Time Protocol." USC/information Sciences Institite. RFC 868
May 1983.

24. Smallberg. D., "Who Talks TCP? - Survey of 7-Dec-82." USC/Information Sciences Institute.
RFC 832, December 1982.

25. Smallberg. D., "Who Talks TCP? - Survey of 14-Dec-82," USC/Information Sciences Institute,
RFC 833. December 1982.

26. Smallberg, D., "Who Talks TCP? - Survey of 22-Dec-82," USC/Information Sciences Institute.
RFC 834, December 1982.

27. Smallberg, D., "Who Talks TCP? - Survey of 28-Dec-82," USC/Information Sciences Institute,
RFC 835, December 1982.

kdiI

146 PUBLICATIONS

28. Smallberg, D., "Who Talks TCP? - Survey of 4-Jan-83," USC/Information Sciences Institute,
RFC 836, January 1983.

29. Smallberg, D., "Who Talks TCP? - Survey of 1 1-Jan-83 " USC/Information Sciences Institute,
RFC 837, January 1983.

30. Smallberg, D., "Who Talks TCP? - Survey of 18-Jan--83." USC/Information Sciences Institute,
RFC 838, January 1983.

31. Smallberg, D., "Who Talks TCP? - Survey of 25-Jan-83." USC/Information Sciences Institute,
RFC 839, January 1983.

32. Smallberg, D.. "Who Talks TCP? - Survey of 1-Feb-83," USC/Information Sciences Institute.
RFC 842, February 1983.

33. Smallberg, D., "Who Talks TCP? - Survey of 8-Feb--83," USC/Information Sciences Institute,
RFC 843, February 1983.

34. Smallberg, D., "Who Talks TCP?- Survey of 15-Feb-83." USC/Irformation Sciences Institute,
RFC 845, February 1983.

35 Smallberg, D., "Who Talks TCP? - Survey of 22-Feb-83." USC/Information Sciences Institute.
RFC 846, February 1983,

36. Smallberg, D.. "Who Provides the Little TCP Services?," USC/Information Sciences Institute,
RFC 848, March 1983.

37 Su. Z., and J. B. Postel, "The Domain Naming Convention for Internet User Applications."
Network Information Center, SRI International, RFC 819, August 1982.

38. Sunshine, C,. "Protocol Specification and Verification Work at USC/ISI: Summary Report,"
USC/Information Sciences Institute, IEN 211, August 1982.

39. Westine. A., "Summary of Smallberg Surveys - February 1983." USC/Information Sciences
Institute, RFC 847. February 1983.

147

RESEARCH AND ADMINISTRATIVE SUPPORT

Institute Administraton:
Robert Blechen

Monica Boseman
Patti Craig
Kathleen Fry
Gary Lum
Karen Luna
Gina Maschmeier
Lani Upton
Rolanda Valentin
Steve Wagner

Graphic Design:
Curtis Nishiyama

Librarian:
Alicia Drake

Publications:
Jim Melancon
Sheila Coyazo

Secretaries to Directors:
Barbara Brockschmidt
Joyce K. Reynolds

Computing Facilities
Trainino and Information

Chloe Holg
Lisa Moses

Development Laboratory
Robert Parker

Shorty Garza
Bob Hines
Jeff LaCoss
Lee Magnone
Rick Shiffman
Jerry Wills

